More - Titration Calculations

- 1. Calculate the concentration of acetic acid (CH₃COOH), if an average of 67.0 ml of 0.468 mol/L magnesium hydroxide (Mg(OH)₂) is required to titrate 50.0 ml of the acid in order to reach the endpoint.
- 2. An average volume of 24.5 mL of 0.560 mol/L $Ca(OH)_2$ was required to titrate 10.0 mL samples of sulfuric acid (H_2SO_4) to their endpoints. What is the concentration of sulfuric acid?
- 3. What volume of 0.060 mol/L NaOH is needed to titrate 25.0 ml samples of 0.075 mol/L $\rm H_3PO_4(aq)$ to the second endpoint. The neutralization reaction is as follows.

 $H_3PO_4(aq) + 2NaOH(aq) \rightarrow Na_2HPO_4(aq) + H_2O(1)$

4. Using the following data of the results of a titration with 0.100 M potassium hydroxide (KOH), calculate the concentration of sulfuric acid (H_2SO_4) .

Burette reading from the titration of 20.0 ml of sulfuric acid with potassium hydroxide					
Trial	Initial Volume	Final Volume			
1	0.0	23.0			
2	23	47.0			
3	0.0	23.5			

- a) Calculate the volume of KOH added in each trail and use this to determine the average volume of KOH required to neutralize the 20.0 mL aliquots of $\rm H_2SO_4$
- b) Use your answer in a) to determine the concentration of sulphuric acid
- 5. Calculate the concentration of phosphoric acid if 25.00 mL of acid requires 76.00 ml of 0.560 mol/L $Ba(OH)_2$ to titrate it to the endpoint (answer based on the third endpoint).
- 6. A impure sample of ascorbic acid $(HC_6H_7O_6)$, with a mass of 2.06 grams is dissolved in water. It is titrated with 0.200 mol/L sodium hydroxide. (The ascorbic acid reacts with sodium hydroxide in a 1: 1 ratio). The sample required 46.0 ml to reach an endpoint using phenolphthalein as the indicator.
- a) Calculate the number of moles of ascorbic acid in the sample.
- b) Calculate the mass of ascorbic acid in the sample.
- c) Calculate the % purity of the sample.
- 7. Determine the mass of $NaHCO_3$ that will exact neutralize the following combination of acids and bases:
 - 25 mL of 18.0 M $\rm H_2SO_4$
 - 50 mL of 14.8 M H_3PO_4
 - 125 mL of 6.0 M NaOH
 - 12.5 g of $Ca(OH)_2$

Answers:	1.	1.25 M	2.	1.372 M	З.	62.5 mL
	4.	0.05875 M	5.	1.135 M	6.	78.6 %
	7.	171 g				