THE ENTHALPY GAME ANSWERS!!

Label each situation that represents a increase in enthalpy with endo and each situation that represents a decrease in enthalpy with exo.

- 1. Exo Change of state from a liquid to a solid
- 2. Endo An increase in chemical potential energy
- 3. Exo Formation of CO₂ from its elements
- 4. Endo mixing ammonium nitrate with water lowers the temperature of the water
- 5. Exo in a reaction atoms rearrange their position to increase the net attraction for other atoms
- 6. Exo $\Delta H^{\circ} = -185 \text{ kJ/mol}$
- 7. Endo $2H_2O \rightarrow 2H_2 + O_2$
- 8. Exo an overall increase in bond energy (energy required to overcome a bond)
- 9. Endo $\Delta H^{\circ} = 98 \text{ kJ/mol}$
- 10. Exo free moving atoms combine to form a compound spontaneously
- 11. Endo change of state from a liquid to a gas
- 12. Exo exothermic reaction
- 13. Exo in a closed system (energy can neither enter nor escape) kinetic energy increases
- 14. Endo $H_2O(1) + 10.5 \text{ kcal} \rightarrow H_2O(g)$
- 15. Endo in a reaction net attraction between atoms is lessened
- 16. Exo $CH_4 + \frac{3}{2}O_2 \rightarrow CO_2 + H_2O$
- 17. Endo endothermic reaction
- 18. Exo a rock falls off a cliff
- 19. Endo in a closed system potential energy increases
- 20. Exo mixing NaOH(s) with water produces heat

- 21. Exo The assembly of a lattice from free ions
- 22. Exo The hydration of ions in solution
- 23. Exo A dissolving process in which the hydration energy is greater than the lattice energy (the interaction between solvent and solute is stronger than the interaction within the lattice structure)
- 24. Exo CO + Cl₂ \rightarrow COCl₂
- 25. Endo The ionization of magnesium to form Mg^{2+} ($Mg ==> Mg^{2+} + 2e^{-}$)
- 26. Endo The vapourization of NaCl(s) to form free $\mathrm{Na^{1+}}$ ions and free $\mathrm{Cl^{1-}}$ ions (i.e. breaking the lattice energy).
- 27. ? The formation of a solution of a salt from water and the solid of the salt.

Summary: In the chart list as many different ways that you can determine if enthalpy has increased and list the counter statement for the decrease in enthalpy.

INCREASE IN ENTHALPY (ENDOTHERMIC)	DECREASE IN ENTHALPY (EXOTHERMIC)
endothermic, ↓ in temperature, "eats" heat	exothermic, † in temperature, makes heat
Q = - value	Q = + value
$\Delta H = + \text{value}$	$\Delta H = - \text{ value}$
increase in chemical potential energy	decrease in chemical potential energy
decrease in "overall" attractive forces (less attracted)	<pre>increase in "overall" attractive forces (more attracted)</pre>
increase in distance between particles	decrease in distance between particles
(s) → (l) → (g)	(g) → (l) → (s)
atomic nuclei experience a net increase in mass - radiation/energy is absorbed (energy becomes mass)	atomic nuclei experience a net decrease in mass - radiation/energy is given off (mass becomes energy)