Bonus

Bonus:

Given the following values at 25 °C and 1 atm pressure:

 $\Delta H_{H2O(1)} = -68.32 \text{ kcal}$ $\Delta H_{H2O(g)} = -57.80 \text{ kcal}$ $S_{H2O(1)} = 16.72 \text{ cal}$ $S_{H2O(g)} = 45.11 \text{ cal}$

And given:

 $\Delta G = \Delta H - T\Delta S$

 $\Delta G = Gibb's$ Free Energy ($\Delta G \leq O$ for spontaneity)

ΔH = Change in Enthalphy
T = Temperature in Kelvins

 $\Delta S = Change in Entropy$

Calculate the temperature above which the physical change of

 $H_2O(1) \Rightarrow H_2O(g)$

becomes spontaneous!!!

- 7. Given that:
- a) $\Delta G = \Delta H T\Delta S$ where:

 $\Delta G = Gibb's$ free energy (J)

 $\Delta H = Enthalpy (J)$

T = temperature (K or °C)

 $\Delta S = Entropy$

- b) $\Delta G < 0$ for a spontaneous reaction
- c) ΔH value is 10 times more significant than the ΔS value State what the sign (+ or -) is for each of the following situations:

Situation	ΔH sign	ΔS sign
evaporation of any liquid to a gas		
combustion of a hydrocarbon		
solidification of a liquid to a crystal solid		
dissolving of a salt in water becomes cold		
dissolving of a salt in water becomes hot		

Note that this question tests your understanding of chemical potential energy in the ΔH column and your understanding of entropy in the ΔS column.