SCH OA1 Thermodynamics Test

- For each of the following, label with a + for in increase in potential energy or a - for a decrease in potential energy:
- the combustion of methane gas
- the formation of diamond deep within the earths crust b) <u>+</u>
- formation of ice on a window through a sublimation process
- formation of toluene (1)
- a reaction in which the reactants have greater forces or attraction than the products
- heat energy is absorbed by the water jacket in a bomb calorimeter (consider reactant and product compounds only)
 - formation of an onion from all necessary raw materials g)
 - the conversion of ethyl alcohol to dimethyl ether h) <u>+</u>
 - deflation of a balloon i) -
 - build up of electrostatic charge in a thunderhead f) +_
 - What is the difference between Q and ΔH ? Why are these two quantities equal in magnitude but opposite of sign for a 2. given chemical or physical change? (1 mark per main point)
 - Q → En (chemical kinetic energy)

 SH → Ep (chemical potential energy)
 - AH = Q law of conservation of energy

 $E_{+} = E_{K} + E_{D}$

AET = O (law of conservation of energy)

- . O AEK + AEP
- . AEp = AEK 1 = - A

3. Using the summation of heats of formation technique, calculate the heat of reaction in kJ, if FeSO₄ (s) is decomposed to form Fe (s) plus sulphur dioxide gas plus oxygen gas. Use the values in the text for help. Now determine the mass of natural gas (CH₄ (g)) in kg that must be combusted to provide enough heat to decompose 750 kg of ferrous sulphate.

$$Q = -4H$$
 $Q = -626.35 kT$
 $0 = -626.35 kT$

- 4. Use Hess' Law (The Law of Hess) to prove that the heat of formation of ethyl alcohol (C_2H_5OH (1)) is -66.4 kcal/mol, using:
- a) The combustion of dimethyl ether (CH₃OCH₃ (1)) has a heat of reaction of $\Delta H = -348.6$ kcal
- b) The straight conversion (i.e. no other compounds present in the reaction) of dimethyl ether (CH_3OCH_3 (1)) to ethyl alcohol (C_2H_5OH (1)) has a heat of reaction of -22.1 kcal
- c) the formation reaction for CO₂(g)
- d) the formation reaction for $H_2O(1)$ Please write out all four equations and the equation for the formation of ethyl alcohol **before** you attempt the Hessian Law!

0H = -348.6 Kcal

- 3
$$CH_3OCH_3(e) \rightarrow C_2H_5OH(e)$$

14 = -22,1kcal

1H = -94.0kcal

4H = -68.3 kcal

$$CH_{3}OCH_{3}(1) \rightarrow C_{2}H_{5}OH(1) \qquad \Delta H = -22.1 \text{ keal}$$

$$REV O \qquad 2CO_{2}(g) + 3H_{2}O(1) \rightarrow CH_{3}OCH_{3}(1) + 3O_{2}(g) \Delta H = 348.6 \text{ keal}$$

$$2\times(3) \qquad 2C(5) + 2O_{2}(g) \rightarrow 2CO_{2}(g) \qquad \Delta H = -188.0 \text{ keal}$$

$$3\times(4) \qquad 3H_{2}(g) + 42O_{2}(g) \rightarrow 3H_{2}O(1) \qquad \Delta H = -204.9 \text{ keal}$$

$$2C(5) + 3H_{2}(g) + 42O_{2}(g) \rightarrow C_{2}H_{5}OH(1) \qquad \Delta H = -66.4 \text{ keal}$$

7/2 - 1/2 = 1/2

5. When ammonium nitrate is mixed with water, the resulting solution quickly becomes very cold. Why? (1 mark per major point)

- Leat energy is absorbed AH = +

- Leat energy is converted to Lennical potential energy

- particles are on average further apart and less attracted

- entropy is the driving force

6. What are the two fundamental driving forces in thermodynamics?

- tendency toward minimum energy (1st Law of Thermody)
- tendency toward maximum randowness (2nd Law of Thermody)

7. Given that:

a) $\Delta G = \Delta H - T\Delta S$ where: Δ

 $\Delta G = Gibb's$ free energy (J)

 $\Delta H = Enthalpy (J)$

T = temperature (K)

 $\Delta S = Entropy$

(4)

b) $\Delta G < 0$ for a spontaneous reaction

c) ΔH value is 10 times more significant than the ΔS value State what the sign (+ or -) is for each of the following situations:

Situation	ΔH sign	ΔS sign]
evaporation of any liquid to a gas	+	+	1
combustion of a hydrocarbon		+	 *
solidification of a liquid to a crystal solid		_	
dissolving of a salt in water becomes cold	+	+	
dissolving of a salt in water becomes hot		+	

Note that this question tests your understanding of chemical potential energy in the ΔH column and your understanding of entropy in the ΔS column.

* best condition for spontaneous reaction

Given that the combustion of 22.0 g of acetic acid (CH₃COOH (1)) is able to warm 4 L of water from 20.000 °C to 39.066 °C, calculate the heat of formation of acetic acid. (Use kcal)

Q=mcat

Q = 4000g x 1,000 cal/ x 19.066°C

Q - 76264cal

Q = 76.264 Kcal

76.264 kcal x 60.06 g CH3 COOH = 208.2 kcal/mol CH3 COOH

DH = - Q

14 = - 208,2 Kal

CH3 COOH (1) + 202(9) -> 2CO2(9) + 2H2O(1) AH=-208.2k

ΔH = [2ΔH° + 2ΔH°]-[ΔH° + 2ΔH° (2)] -

-208.2kcal = [2(-94.0kcal) +2(-68.3kcal)]-[3H°(H, COOH +2(0))

-208,2 kcal = -324,6 kcal - DH CH, COOH

SH° CH2COOH = -116.40 kcal

If the values in this question are correct the answer you should get is -116.4kcal!!!

Bonus:

Given the following values at 25 °C and 1 atm pressure:

$$\Delta H_{\mathbf{H_2O(g)}}^{\sigma} = -68.32 \text{ kcal}$$
 $\Delta H_{\mathbf{H_2O(g)}}^{\iota} = -57.80 \text{ kcal}$
 $S_{\mathbf{H_2O(g)}}^{\iota} = 16.72 \text{ cal}$
 $S_{\mathbf{H_2O(g)}}^{\iota} = 45.11 \text{ cal}$

Calculate the temperature above which the physical change of $H_2O(1) \Rightarrow H_2O(g)$

becomes spontaneous!!!

$$\Delta H = \Delta H_{H_2O(g)}^{\circ} - \Delta H_{H_2O(e)}^{\circ}$$
 $\Delta S = S_{H_2O(g)}^{\circ} - S_{H_2O(e)}^{\circ}$