| SUBSTANCE | STRUCTURE | ALL FORCES PRESENT (state if intramolecular or intermolecular etc.) | MACROMOLECULE
OR DISCRETE
COVALENT | SOLUBILITY IN
H ₂ O
(given state) | SOLUBILITY IN
HEXANE
(given state) | CONDUCTIVITY
(given state) | |-------------------------|-----------|--|--|---|---|--| | ethyl alcohol
(1) | ∕он | intramolecular = covalent intermolecular = hydrogen bond | discrete
covalent | excellent
(fully
miscible), H-
bonds with
H ₂ O | moderate,
interactions
between non-
polar region
of alcohol | poor to nil,
slight
dissociation:
C ₂ H ₈ O' + H' | | acetic acid
(1) | 0H | intramolecular = covalent intermolecular = hydrogen bond | discrete
covalent | excellent
(fully
miscible), H-
bonds with
H ₂ O | moderate,
interactions
between non-
polar region
of acid | slight
better
dissociation:
CH ₃ COO ⁻ + H ⁺ | | acetone (1) | °4 | <pre>intramolecular = covalent intermolecular = dipole interact.</pre> | discrete
covalent | excellent
(fully
miscible),
recieves H-
bond from H ₂ O | moderate to
good, more
similar
polarities | nil
no free moving
charged
particles | | pentane (1) | ~ | <pre>intramolecular = covalent intermolecular = v.d.W.</pre> | discrete
covalent | poor to nil,
unlike
molecules,
polar vs non-
polar | excellent,
very similar
polarities | nil
no free moving
charged
particles | | bromine (1) | Br Br | <pre>intramolecular = covalent intermolecular = v.d.W. (dipole!)</pre> | discrete
covalent | fair due to
temporary Br ₂
polarization | excellent,
very similar
polarities | nil
no free moving
charged
particles | | helium (g) | He | no intra or intermolecular forces | individual
atoms | poor to nil,
unlike
molecules,
polar vs non-
polar | fair, helium will prefer the high kinetic energy gas state | nil
no free moving
charged
particles | | wax (s) | C50 H102 | intramolecular = covalent intermolecular = v.d.W. | discrete
covalent | poor to nil,
unlike
molecules,
polar vs non-
polar | excellent,
very similar
polarities | nil
no free moving
charged
particles | | sulphur
trioxide (g) | 5=0 | intramolecular = covalent a gas : no intermolecular forces | discrete
covalent | reacts H ₂ O +
SO ₃ → H ₂ SO ₄
(otherwise
poor to nil) | should have
good
solubility,
similar
polarity | nil
no free moving
charged
particles | | sulphur
dioxide (g) | 5=0 | intramolecular = covalent a gas : no intermolecular forces | discrete
covalent | fair, slight
polarization
in SO ₂ | should have
fair
solubility,
less similar
solubility | nil
no free moving
charged
particles | | SUBSTANCE | STRUCTURE | ALL FORCES PRESENT (state if intramolecular or intermolecular etc.) | MACROMOLECULE
OR DISCRETE
COVALENT | SOLUBILITY IN
H ₂ O
(given state) | SOLUBILITY IN
HEXANE
(given state) | CONDUCTIVITY (given state) | |--|---|--|--|--|--|--| | diamond (s) | | intramolecular = covalent no intermolecular forces present | macromolecule | completely
insoluble | completely
insoluble | nil
no free moving
charged
particles | | quartz (s) | -5: -0 -5: -0 -5: -
-5: -0 -5: -0 -5: -
-5: -0 -5: -0 -5: - | <pre>intramolecular = covalent no intermolecular forces present</pre> | macromolecule | completely
insoluble | completely
insoluble | nil
no free moving
charged
particles | | ammonia (g) | N H | intramolecular = covalent a gas : no intermolecular forces | discrete
covalent | excellent, H-bonds with H ₂ O, forms saturated sol. at 28 - 30% | poor to nil
dissimilar
polarities | nil
no free moving
charged
particles | | ammonia (1) | H H | intramolecular = covalent intermolecular = hydrogen bond | discrete
covalent | temperature
would be -
33.35 ℃ :
hard to
dissolve | poor to nil
dissimilar
polarities | nil
no free moving
charged
particles | | ammonia (aq) | Н-ö:
N н н
Н н | intramolecular = covalent (present within NH ₃ and H ₂ O) intermolecular = hydrogen bond ($^{+}$ nvolves both NH ₃ and H ₂ O) | discrete
covalent | N.A. | poor to nil
dissimilar
polarities | slight to fair
NH ₃ + H ₂ O -0
NH ₄ OH -0-0 NH ₄ +
+ OH | | lithium
fluoride (s) | Lit F' Lit F' Lit F' Lit F' Lit F' Lit F' | intramolecular = ionic bond no intermolecular forces present | macromolecule | soluble but poor for ionic compounds, high lattice energy | completely
insoluble | nil no free moving charged particles in solid state | | brass (s)
(alloy of Cu
and Zn) | Zn Cu Zn CuCu
Cu Cu Cu Zn | | macromolecule | completely
insoluble | completely
insoluble | excellent,
free moving
electrons | | bronze (s)
(alloy of Cu
Sn and Pb) | Cu Sn Cu Cu Cu
Cu Cu Cu Sn Cu
Cu Pb Cu Cu Cu | <pre>intramolecular = metallic no intermolecular forces present</pre> | macromolecule | completely
insoluble | completely
insoluble | excellent,
free moving
electrons | | graphite (s) | | "intraplanar" covalent bond "interplanar" v.d.W. | macromolecule | completely
insoluble | completely
insoluble | good within
planes
(delocalized
e ⁻), nil
between planes | | | | | | | | ينهي المناكسية المحاد الأاسراء | |-------------------------|--|--|--|--|--|---| | SUBSTANCE | STRUCTURE | ALL FORCES PRESENT (state if intramolecular or intermolecular etc.) | MACROMOLECULE
OR DISCRETE
COVALENT | SOLUBILITY IN
H₂O
(given state) | SOLUBILITY IN
HEXANE
(given state) | CONDUCTIVITY (given state) | | ammonium
nitrate (s) | [n-n-n] [io n=0] | "intraionic" covalent bond "interionic" ionic bond (classified as ionic compound) | macromolecule | excellent, highly soluble ionic comp. high hydration energy | completely insoluble | nil
no free moving
charged
particles | | sodium
sulphate (aq) | 2 [Na] " :::]2- | "intraionic" covalent in SO ₄ ² - dipole interaction between H ₂ O and hydrated ions hydrated ions! | H ₂ O discrete
covalent,
discrete poly
and monatomic
ions | N.A. | completely
insoluble | good
free moving
ion in
solution | | oxygen (1) | ,o=0. | intramolecular = covalent intermolecular = v.d.W. | discrete
covalent | poor, unlike
molecules,
polar vs non-
polar (fish
breath D.O.) | fair to
moderate, O ₂
would prefer
to be a free
gas | nil
no free moving
charged
particles | | silicon
carbide (s) | -\$(- C - \$; - C -
- C - \$; - C - \$; -
-\$; - C - \$; - C - | intramolecular = covalent no intermolecular forces present | macromolecule | completely
insoluble | completely
insoluble | nil
no free moving
charged
particles | | calcium
chloride (s) | [ca]2+ 2 [@] | intramolecular = ionic no intermolecular forces present | macromolecule | good, soluble
ionic comp.
good hydration
energy | completely
insoluble | nil
no free moving
charged
particles | | gold (s) | Au Au Au Au Au
Au Au Au Au Au
Au Au Au Au Au | no intermolecular forces present | macromolecule | completely
insoluble | completely
insoluble | excellent,
free moving
electrons | | NaCl (1) | [Na]" [: ce:]" | ionic attraction between Na ¹ and Cl ¹⁻ ions | discrete
monatomic
ions | temperature is 650 °C, otherwise soluble | completely
insoluble | good
free moving
ions in liquid
state | | Fe (g)
Occo! Hot! | Fe | no forces of attraction present | individual
atoms | temperature is
2750 °C or
greater | completely
insoluble | if hot enough
a plasma state
will result
with free ion
and electrons! | | I ₂ (s) | I, I | <pre>intramolecular = covalent intermolecular = v.d.W.</pre> | discrete
covalent | poor to fair,
unlike
molecules | fair to
moderate,
similar
solublities | nil
no free moving
charged
particles |