K	C	A	T
337		- 10	
22		41	37

-	
14	\sim
77	11
,	,,

|--|

SCH 4U Unit Test Forces and Molecular Properties

1. Fill in each table as done on the assignment. Including the oxidation state of the central atom:

		 		_	
NO ₃ ¹⁻	total # of e pairs				
	σ bonding pairs				
	lone pairs				
	π bonding pairs			/	8
	base shape				
	actual shape				
oxidation state of N	approx. bond angles				
TR	+ o + o 1			7	
IF ₅	total # of e ⁻ pairs				
	σ bonding pairs				
	lone pairs				
	π bonding pairs			/8	3
	base shape				
	actual shape				
oxidation state of I	approx. bond angles				
ClO ₃ 1-	total # of e ⁻ pairs			7	
j	σ bonding pairs			-	
	lone pairs			١,	0
	π bonding pairs			- /!	9
	base shape				
	actual shape				
oxidation state of Cl	approx. bond angles	K	С	A	Т
				25	

2. Classify each of the following formula according to type of forces by placing each formula in the correct place in the table:

SiCl₄ (silicon(IV) chloride) K_2O (potassium oxide) HCOOH (methanoic acid) $(NH_4)_2SO_4$ (ammonium sulphate) C₂H₅OH (ethyl alcohol) Li₃N(lithium nitride) C_n (diamond) NH₄NO₃ (ammonium nitrate) CO₂ (carbon dioxide) PH₃ (phosphorus trihydride) XeF₄ (xenon tetrafluoride) $Mg_{0.50}Al_{0.25}Ti_{0.25}$ H_2O (water) SiO₂ (quartz) $H_5C_2OC_2H_5$ (diethyl ether) Au (gold) H_2CCl_2 (methylene dichoride) C₃H₈ (propane)

 $C_{14}H_{10}$ (anthracene)

NH₃ (ammonia)

Cov	Covalently Bonded Compounds			
Covalent	Discrete	Covalent M	olecules	Crystals
Crystals	van der Waal (intermolecular force)	dipole inter- action (intermolecular force)	hydrogen bond (intermolecular force)	
	Covalent Network	Covalent Discrete Network Crystals van der Waal (intermolecular	Covalent Discrete Covalent M Network Crystals van der dipole Waal inter- (intermolecular force) (intermolecular)	Covalent Discrete Covalent Molecules Network Crystals van der dipole hydrogen Waal inter- bond (intermolecular force) (intermolecular force)

K	С	A	Т
A 3	8	8	
			20

3.	For each pair of compounds, circle the one with the higher
	melting and/or boiling point. In the space provided give
	the rational for your choice. Including precise reference
	to the attractive forces that must be overcome to melt or
	boil each compound as well as any other forces that may be
	present and why this leads to the choice you have made. Be
	specific as to whether the forces that must be overcome are
	intramolecular or intermolecular. Include any additional
	relevant information that has helped your choice. Use point
	form.

a)	C_5H_{12}	VS	C_3H
/	- 31/		- 3

/4

b) SiO₂ vs SiF₄

/4

 $\overline{\text{c)}}$ H_2CCl_2 vs CF_4

/4

d) K vs Ca

/4

K	С	A	Т
- 10			38
		16	

4. Match each description with the term it best describes.

-	_		
	always present between molecules within liquids or solids composed of discrete covalent molecules	a)	ionic bonding
	most diverse and specific type of bonding, well studied and complex	b)	dipole interactions
	occupies the lattice points in ammonium nitrate (NH_4NO_3)	c)	anisotropic
	property that is used when determining bond type or bond polarization possibilities	d)	metallic bonding
	requires hard charge polarization and lone pair interaction with N, O or F	e)	alloy
	sp , sp^2 , sp^3 are examples of	f)	covalent network crystal
	a solid that has molecules as the lattice points	g)	sigma
	an adjective that describes a physical property that has a directional characteristic	h)	van der Waal force
	creates macromolecules that may be soluble in water	i)	electronegativity
	type of bond that has little effect on shape	j)	hydrogen bond
	non-conductive in any state, insoluble in all solvents	k)	pi
	a solid that can have variable composition, a solid solution	1)	covalent bonding
	forms the core (cental bond) of double and triple bonds	m)	polyatomic ions
	present when bond polarizations and geometry make possible regions of partial positive and partial negative charge	n)	molecular solid
	produces strong yet flexible bonds	0)	hybridized atomic orbitals

к с а т 15 5. For the given structure identify all bonds as either sigma (σ) or pi $(\pi)\,.$

6. Describe in detail the structure of graphite and use this information to explain the anisotropic property that is unique to this compound. A diagram may be helpful.

/5

K	C	A	T
		- 8	
7			

7. Given the following structures and information:

	М.Р.	В.Р.
	-57 °C	126 °C
ОН	−17 °C	118 °C

- what class of compounds (ionic, covalent network, discrete a) covalent molecules, or metallic) do these substance belong to?
- b) what are <u>ALL</u> of the intermolecular forces present in the first compound (octane) in order of decreasing strength
- C) what are <u>ALL</u> of the intermolecular forces present in the second compound (acetic acid) in order of decreasing strength
- offer a good explanation as to why the boiling point of d) octane is higher than acetic acid

offer a good explanation as to why the trend in melting e)

point is reversed for these two compounds

K	С	A	Т
	80	8	28
			8

/1

/1

/2

/2

/2

8. Why is the compound $\mathrm{NH_4NO_3}$ non-conductive in the solid state but conductive in both the liquid state and in aqueous solution? What is special about the classification of this compound given its atomic make-up? Include a diagram!

/4

/5

9. For the following solute, solvent pairs indicate if the solute in soluble in the given solvent or not. If soluble, what are the smallest units present - be precise. If not soluble, leave this column blank or write N.A.

SOLUTE	SOLVENT	YES/NO	SMALLEST UNITS OF SOLUTE
KBr	water		
Au (gold)	Hg (mercury)		
$C_{50}H_{102}$ (wax)	water		
(NH ₄) ₂ SO ₄	water		
C ₅₀ H ₁₀₂ (wax)	C_5H_{12} (pentane)		

K	U	A	T
	20		
			9