SCH 4U Unit Test Forces and Molecular Properties

1. Fill in each table as done on the assignment. Including the oxidation state of the central atom:

BO ₃ ³⁻	total # of e ⁻ pairs	
	σ bonding pairs	
	lone pairs	
	π bonding pairs	
	base shape	
	actual shape	
oxidation state of B	approx. bond angles	
SF ₄	total # of e ⁻ pairs	
	σ bonding pairs	
	lone pairs	
	п bonding pairs	
	base shape	
	actual shape	
oxidation state of S	approx. bond angles	
NO ₃ ¹⁻	total # of e ⁻ pairs	
	σ bonding pairs	
	lone pairs	
	п bonding pairs	
	base shape	
	actual shape	
oxidation state of N	approx. bond angles	

2. Classify each of the following formula according to type of forces by placing each formula in the correct place in the table:

- H_2O (water) - $C_6H_5CH_3$ (toluene)

- SF_6 (sulphur(VI) fluroide) - CO_2 (carbon dioxide)

- Ag (silver) - SiO_2 (quartz)

- CH_3COOH (acetic acid) - NH_4NO_3 (ammonium nitrate)

- KI (potassium iodide) - HF (hydrogen fluoride)

- C_4H_{10} (butane) - $Cu_{0.85}Zn_{0.10}Sn_{0.05}$ (brass)

- $HCCl_3$ (chloroform) - KNO_3 (potassium nitrate)

- C_n (diamond) - PCl_3 (phosphorus trichloride)

- CH_3OH (methyl alcohol) - CF_4 (carbon tetrafluoride)

- Li_2O (lithium oxide) - $\text{H}_5\text{C}_2\text{OC}_2\text{H}_5$ (diethyl ether)

Ionic Crystals	Covalently Bonded Compounds			Metallic Crystals	
(including crystals containing polyatomic ions)	Covalent Network	Discrete Covalent Molecules			Clystals
	Crystals	van der Waal (intermolecular force)	dipole inter- action (intermolecular force)	hydrogen bond (intermolecular force)	

3.	For each pair of compounds, circle the one with the higher
	melting and/or boiling point. In the space provided give
	the rational for your choice. Including precise reference
	to the attractive forces that must be overcome to melt or
	boil each compound as well as any other forces that may be
	present and why this leads to the choice you have made. Be
	specific as to whether the forces that must be overcome are
	intramolecular or intermolecular. Include any additional
	relevant information that has helped your choice. Use point
	form.

a)	NH_3	VS	CH_4

b) Sc vs K

 $\overline{\text{c)}}$ CO₂ vs SiO₂

 $\overline{d) \quad H_5C_2OC_2H_5 \text{ vs } C_5H_{12}}$

4.	Match each definition with the word it bes	t des	scribs:
	electrons that do not affect the shape of a molecule	1.	anisotropic
	an intramolecular force that is influenced by the number of electrons available in the valence shell	2.	coordinate covalent bond
	a term used to describe the ability of double bond electrons in graphite planes to flip location	3.	delocalized
	necessary for hydrogen bonding to occur	4.	discrete covalent molecule
	uneven electron pair sharing	5.	electronega tivity
	type of energy associated with the strength of a solid ionic crystal	6.	exposed proton
	an intermolecular force that is influenced by the total number of electrons found in a discrete covalent molecule	7.	hydration
	describes a feature of conductivity that is unique to graphite	8.	lattice
	type of energy associated with the interaction between water molecules and dissolved ions	9.	lone pair
	a property used to determine the degree of polarization within a single covalent bond	10.	macromole cule
	unspecified and large number of atoms or ions bonded together by an intramolecular force	11.	metallic
	produces difference between actual shape and base electron shape	12.	pi
	type of covalent bond that is used by halogens and halogen like oxygens	13.	sigma
	must be present before intermolecular forces can be considered	14.	tetrahedral
	most common place base shape	15.	van der Waals

5.	Organize the following list in order of decreasing
	solubility in water. Give some clear reasoning behind your
	choice using the appropriate vocabulary from this unit.

alcohol, aldehyde, alkane, carboxylic acid, alkyne, ether, ketone, alkene

6. Explain the reason for the observed conductivity or lack there of in the following substance (note the states):

ron (s)	
JaCl (aq)	
graphite (s)	
JaCl (s)	
SiO ₂ (s)	
$ m C_{25}H_{52}$ (1)	

7. Provide any and all information that you possibly can about the substance ammonium nitrate (NH $_4$ NO $_3$). This is an open ended question. Here are some ideas, but feel free to add more! What force, or forces are present in the solid state? What type of compound is this? What are the individual units within the solid lattice structure? What are the shape details of these units? What is the solubility of the this substance in water or in non-polar substances such as hexane. Use point form and diagrams. Some marks are for presentation.