Equilibrium Problems Answers

8.		$N_2O_4(g) \rightleftharpoons 2NO_2(g) \Delta H^\circ = +59 \text{ kJ}$
a)	S:	↑ heat energy
	R:	↓ heat energy
	H:	endothermic reactions
	D:	shift right
	Е:	↓ [N ₂ O ₄ (g)]
b)	S:	↓ pressure
	R:	↑ pressure
	H:	make more moles of gas
	D:	shift right
	E:	↓ [N ₂ O ₄ (g)]
C)	S:	<pre> 1 [NO₂(g)] </pre>
	R:	↓ [NO ₂ (g)]
	H:	use up NO ₂ (g)
	D:	shift left
	Е:	↑ [N ₂ O ₄ (g)]
d)	addi	tion of He will have no effect - He is not a part of the equilibrium

- even though, total pressure will increase, the partial pressures of the gases at equilibrium will not change (partial pressure is not altered by addition of a different gas and in fact pressure changes really are concentration changes!!!)

- e) addition of a catalyst will have no effect on equilibrium position but will decrease the time required for equilibrium to be reached in the first place
- 9. $H_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons H_2O(g) \Delta H^\circ = -238 \text{ kJ}$
- a) S: 1 heat energy
 - R: \downarrow heat energy
 - H: endothermic reactions
 - D: shift left
 - E: \downarrow [H₂O(g)]
- b) S: ↓ pressure
 - R: 1 pressure
 - H: make more moles of gas
 - D: shift left
 - E: \downarrow [H₂O(g)]
- d) same as above
- e) same as above

a) $4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g) \Delta H^\circ = -903 \text{ kJ}$ consider temperature D: shift to the right H: exothermic reaction R: 1 Q s:↓ o therefore reduce the temperature consider pressure D: shift to the right H: make more moles of gas R: Î P S: ↓ P therefore reduce the pressure $Br_2(g) + Cl_2(g) \rightleftharpoons 2BrCl(g) \Delta H^\circ = 14.6 \text{ kJ}$ b) consider temperature D: shift to the right H: endothermic reaction R: \downarrow Q

s: 1 o

therefore increase the temperature

10.

consider pressure: Since this reaction is equimolar with respect to moles of gas, pressure will not be able to have any effect on equilibrium position

c) $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq) \Delta H^\circ = 24.244$

consider temperature

D: shift to the right

H: endothermic reaction

R: \downarrow Q

s: î Q

therefore increase the temperature

consider pressure: Since no gases are present in this reaction, virtually no volume change will occur during a reaction and hence pressure has no effect on the equilibrium position.

11.

a)
$$K_{eq} = \frac{\left[HF(g)\right]^2}{\left[H_2(g)\right]\left[F_2(g)\right]}$$

b)
$$K_{eq} = \frac{\left[N_2 O_5(g)\right]^2}{\left[NO(g)\right]^4 \left[O_2(g)\right]^3}$$

c)
$$K_{eq} = \left[CO_2(g) \right]$$

d)
$$K_{eq} = [H_2O(g)]^9$$

- 12. Answer is based on the fact that $K_{\rm eq}$ values are based on product concentration over reactant concentrations. Therefore:
- if $K_{eq} = 1.5 \times 10^{12}$ reactants <<< products
- if $K_{eq} = 0.15$ reactants > products
- if $K_{eq} = 4.3 \times 10^{-15}$ reactants >>> products Therefore:
- a) products over reactants ratio is large for the first example
- b) products over reactants ratio is small for the last example

13. $Br_2(1) \rightleftharpoons Br_2(g)$ $\Delta H^\circ = +$ as written (i.e. particles further apart, must overcome attractive forces)

 $K_{eq} = [Br_2(g)]$

- s: 1 Q
- R: ↓ Q

H: endothermic reaction (use up heat)

D: Shifts to the right

E: $\therefore \uparrow [Br_2(g)], \therefore \uparrow K_{eg}$ i.e $K_{eg} = [Br_2(g)]$

therefore if $[Br_2(g)]$ goes up the K_{eq} will increase as well

a) 15 s

b)

$$K_{eq} = \frac{\left[COCl_2(g)\right]}{\left[CO(g)\right]\left[Cl_2(g)\right]}$$

$$K_{eq} = \frac{[0.8]}{[1.7][0.7]}$$

$$K_{eq} = 0.672$$

Please note that units are not required for any part of the this type of calculation.

- c) Injection of CO (only an injection would cause an abrupt increase in concentration.
- d) Is most likely a change in temperature (could verify this by seeing if the $K_{\rm eq}$ value is different after equilibrium is re-established).
- e) Yes the continuous activity at the molecular level is at work.
- f) Injection of COCl₂ (see c) above).
- g) Addition of catalyst will not alter equilibrium concentrations but will increase the rate at which equilibrium recovers from a stress. Any shifts in concentration would become more abrupt.
- h) Decrease temperature and increase pressure
- i) Temperature will alter $K_{\rm eq}$ values. Hence if there is a change in $K_{\rm eq}$ values, temperature must have been changed