Equilibrium Test - General Principles and Gas Phase Calculations!!

1. Provide the six criteria required in order for a system to be considered an equilibrium system.

2. For the equilibrium show below, what would the effect be on the equilibrium constant (Keq) if the temperature is decreased:

$$2NH_3(g) \Leftrightarrow N_2(g) + 3H_2(g)$$

3. How can the reactant concentration be maximized using the stress of change in temperature or change in volume?

$$N_2O_4(g) \iff 2NO_2(g) \quad \Delta H^\circ = ?$$

Method One:	Method Two:
D:	D:
н:	н:
R:	R:
S:	s:
4	4.

4. For this gas phase equilibrium in a 25.0~L flask, the initial concentrations of nitrogen, hydrogen and ammonia were found to be 0.0044~mol/L, 0.0132~mol/L and 0.0312~mol/L. To this equilibrium, a change in temperature increases the [NH $_3$ (g)] to 0.0352~mol/L. Use this information to determine the final concentrations of the other two gases and the equilibrium constant at the final temperature.

	N_2	+	3H ₂	-	2NH ₃	
Initial []			17-14			-
Initial Amount						
Final Amount						
Final				77 A		

5. Phosgene gas (a particularly poisonous gas) i $\bf 5$ produced through the equilibrium reaction show in the table. Equilibrium concentrations in an $\bf 8.0~\bf L$ flask are found to be:

[CO] = **0.400** mol/L

 $[Cl_2] = 1.00 \text{ mol/L}$

 $[COCl_2] = 0.250 \text{ mol/L}$

What will these concentrations become if the flask volume is doubled (i.e 16.0 L). Please include an L.C.P. determination as a part of your answer. Assume constant temperature

	CO	+	Cl_2	=	COC1 ₂
Initial					
Initial Amount					
Final Amount					
Final []					

S:

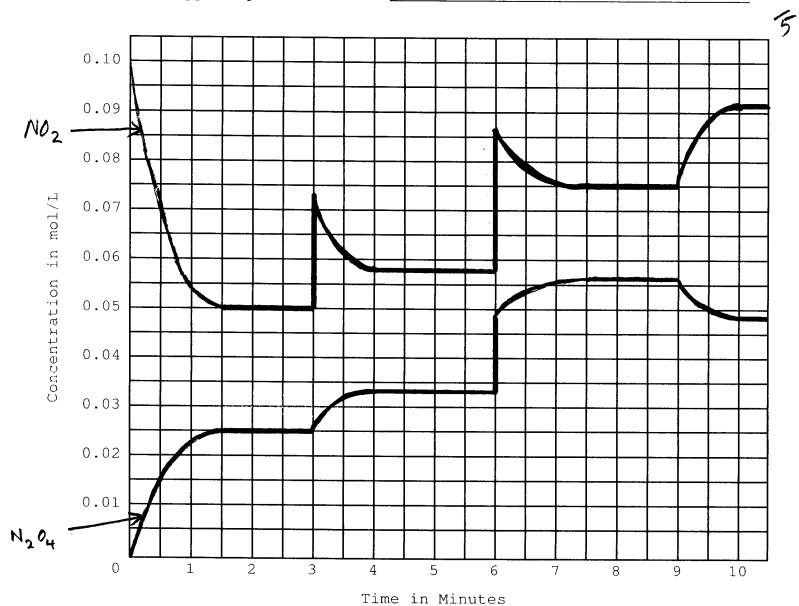
R:

Н:

D:

E: (opt and)

6. For this gas phase equilibrium shown in the table, **8 mol of C** is place in a **4 L flask** and allowed to equilibriate. If the equilibrium constant for this reaction is **2.50**, what are the final concentrations for all three gases?


	А	+	В		С
Initial []					
Initial Amount					
Final Amount					
Final					

7. The graph shown below is for the gas phase equilibrium:

$$2NO_2(g) \Rightarrow N_2O_4(g)$$

Please indicate:

- a) when equilibrium is first reached? _____
- b) what is happening at 3 minutes? _____
- c) when equilibrium is re-established? _____
- d) what is happening at 6 minutes _____
- e) what is happening at 9 minutes _____

Provide clear evidence to support your answer for e) above using numerical verification. Explain briefly.