When a stress is imposed on a system at equilibrium. The equilibrium will shift position, in such a way as to reduce the (but not eliminate) the effect of the stress. → Equilibria fight back

- equilibrium position is the relative amount of reactants vs. products' (amount = concentration)

- ① "Lie to the left" \rightarrow 80% reactant, 20% products ② "Lie to the right" \rightarrow 15% reactant, 85% products ③ "Lie far to the right" \rightarrow 5% reactant, 95% products ④ "Lie very far to the right" \rightarrow 1% reactant, 99% products ⑤ "Lie very far to the left" \rightarrow 99.99% reactant, 0.001% products
 - Le chatilier's principle can be used to push the equilibrium position one way or another.
- Stress: any change imposed on the equilibrium that can have an effect on position (some changes may not be a stress).
 - Change in temperature -> change in heat energy change in volume -> change in pressure change in concentration (of a reactant or product) -> brought about by adding or removing a substance

Things that are not stresses:

→ addition of a catalyst (will not alter equilibrium position but will cause equilibrium to be reached sooner)
 → addition of an unrelated substance
 → pressure alterations on an equal molar gas phase equilibrium

To determine the direction of shift use:

S: stress (written in terms of equilibrium)

R: responce (opposite of stress)

H: how (written in terms of equilibrium)

D: direction (outline "chicks local" as "chicks local"

D: direction (either "shifts left" or "shifts right" E: effect (changes in amount (easy) changes in concentration (annoying))

Nzig) + 3Hzig) \rightleftharpoons 2NHzig) $\triangle H =$ increase in temperature

S: increase in heat energy (kinetic energy)

R: decrease in heat energy

H: endothermic reaction

D: shifts left (endothermic)

E:-Increase in amount of N_2 $\uparrow^n N_2$ bigger increase in amount of H_z $\uparrow^n H_z$ decrease in amount of NH_3 $\downarrow^n NH_3$

- $\uparrow[N_2]$, $\uparrow[H_2]$, $\downarrow[NH_3]$

```
eg.
```

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \Delta H =$ L> decrease in volume

5 : increase in pressure

R: decrease in pressure

H: make less moles of gas

D: shift right (exothermic)

E: decrease amount of N_2 (1^nN_2) bigger decrease amount of H_2 (1^nN_2) increase amount of NH_3 (1^nNH_3) -1^nNH_3 (1^nNH_3) (1^nNH_3)

eg.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ \Rightarrow remove NH₃ by some "process" **

S: decrease concentration NH3

R: increase concentration NH₃

H: makes more NH3

D: shift night

E: decrease amount of N_2 (1 N_2)

bigger decrease amount of $H_2(| ^n H_2)$ thny decrease of NH₃ (n NH₃) $- V[N_2], [(H_2], V[NH_3]$ re

> removed 1 nH3

overall

decrease

** removal of a substance is an effective way to "draw an equilibrium to completion"

