Le Chatelier's Principle Demonstration Using FeSCN²⁺ Equilibrium

Reactant #1	$KSCN(s) \rightarrow K^{1+}(aq) + SCN^{1-}(aq)$
Reactant #2	$Fe(NO_3)_3(s) \rightarrow Fe^{3+}(aq) + 3NO_3^{1-}(aq)$
Resulting Equilibrium	$FeSCN^{2+}(aq) \iff Fe^{3+}(aq) + SCN^{1-}(aq)$

Please note that the brown colour in the equilibrium is a result of presence of $\text{FeSCN}^{2+}(\text{aq})$. Therefore a reduction in $[\text{FeSCN}^{2+}]$ will cause the brown colour to fade and a increase in $[\text{FeSCN}^{2+}]$ will cause the brown colour to intensify.

- Show a full L.C.P. determination for the addition of solid KSCN(s)
- 2. Show a full L.C.P. determination for the addition of Fe(NO $_3$) $_3$ (aq)
- 3. Show a full L.C.P. determination for the addition of solid Na_2HPO_4 . Please note that Na_2HPO_4 will consume Fe³⁺ ion.