Example #1:

 $0.40 \text{ mol of } PCl_5(g)$ is placed in a 15.0 L flask and allowed to equilibriate (allowed to reach equilibrium) according to this equilbrium reaction:

 $\mathrm{PCl}_5(\mathbf{g}) \Longrightarrow \mathrm{PCl}_3(\mathbf{g}) + \mathrm{Cl}_2(\mathbf{g})$

At equilibrium, the concentration of $Cl_2(g)$ is found to be 0.01 mol/L. Use this information to determine k_{eq} for this reaction. (Hint: What this means is find all final concentrations and then use this to determine k_{eq})

	$PCl_5 \implies PCl_3 + Cl_2$			15 L flask
Initial []				(1) $n = CV$ n = 0.01 mol/L x 15 L n = 0.15 mol
Initial Amount	$0.40 \ { m mol}$	Ø	Ø	(2) 0.15 mol Cl ₂ x $\frac{1 \operatorname{mol PCl}_3}{1 \operatorname{mol Cl}_2} = 0.15 \operatorname{mol PCl}_3$
Final Amount	$0.40 - 0.15^{3}$ = 0.25 mol	$\begin{array}{c} 2 \\ 0.15 \text{ mol} \end{array}$	(1) 0.15 mol	$ (3) 0.15 \text{ mol } \operatorname{Cl}_2 \ge \frac{1 \operatorname{mol PCl}_5}{1 \operatorname{mol Cl}_2} = 0.15 \operatorname{mol PCl}_5 $
Final	(4) 0.016 mol/L	5 0.01 mol/L	0.01 mol/L	(4) and (5) $C = \frac{n}{V}$

$$k_{eq} = \frac{[PCl_3][Cl_2]}{[PCl_5]}$$

 $k_{\rm eq} = \frac{(0.01)^2}{0.016}$

 $k_{\rm eq}=0.00625$