Ksp Problems - SCH 4U

Calculate the Ksp for each of the salts whose solubility is listed 1. below. $CaSO_4 = 5.0 \times 10^{-3} \text{ kmol/m}^3$ (a) $MgF_2 = 2.7 \times 10^{-3} \text{ kmol/m}^3$ (b) $AgC_2H_3O_2 = 1.02 \text{ g/l00 mL}$ (C) (d) $SrF_2 = 12.2 \text{ mg}/100 \text{ mL}$ Calculate (a) the solubility in $kmol/m^3$ of each of these salts and (b) 2. the concentration of the cations in mg/mL in each of the saturated solutions $Ksp = 2 \times 10^{-12}$ (a) AqCN $Ksp = 1.5 \times 10^{-9}$ $BaSO_4$ (b) $Ksp = 3.7 \times 10^{-19}$ (C) FeS $Ksp = 9 \times 10^{-12}$ (d) Mg(OH)₂ $Ksp = 1.6 \times 10^{-49}$ (e) Aq_2S (f) CaF₂ $Ksp = 4.9 \times 10^{-11}$ 3. Consider these slightly soluble salts: PbS Ksp = 8.4×10^{-28} (1) $PbSO_4$ Ksp = 1.6 X 10^{-8} (2) $Pb(IO_3)_2$ Ksp = 2.6 X 10^{-13} (3) (a) Which is the most soluble? Calculate the solubility in $kmol/m^3$ of $PbSO_4$ (b) (C) How many grams of PbSO₄ dissolve in one litre of solution? How can you decrease the concentration of $Pb^{2+}(aq)$ in a saturated $PbSO_4$ (d) solution? What is the concentration in $kmol/m^3$ of PbS in a saturated solution of (e) the salt? 4. For each of these substances, calculate the milligrams of metallic ion per mL that can remain at equilibrium in a solution having a $[OH^{1-}]$ = 1.0 X 10⁻⁴ kmol/m³ $Ksp = 1.6 \times 10^{-19}$ Cu(OH)₂ (a) $Ksp = 6.0 \times 10^{-38}$ (b) Fe(OH)₃ $Ksp = 9.0 \times 10^{-12}$ (C) $Mg(OH)_2$ Calculate the [Aq+] needed to begin precipitation of each of these 5. anions from solutions containing one mg of anion per mL of solution. Br^{1-} (a) S^{2-} (b) BrO₃¹⁻ (C) CrO42-(d) IO31-(e) 6. How many mg of TlI can dissolve in 500 mL of (a) water, 0.1 kmol/m³ TlNO₃ (b) 0.02 kmol/m³ KI (C) What is the solubility in $kmol/m^3$ AgBr in a solution resulting from the 7. addition of 50.0 mL of 0.01 kmol/m³ CaBr₂ to 50.0 mL of 0.008 kmol/m³ $AqNO_3$? Fifty mL of 0.10 kmol/m³ AgNO₃ is added to 150 mL of 0.10 kmol/m³ CaCl₂. 8. What is the concentration of each ion in the resulting solution? 9. In which of these reactions does a precipitate form?

- 9. In which of these reactions does a precipitate form?
- (a) 10.0 mL of 0.01 kmol/m³ AgNO₃ + 10.0 mL of 0.10 kmol/m³ Na₂SO₄
- (b) 1 mg of MgCl₂+ 1 L of 0.01 kmol/m³ Na₂C₂O₄
- (c) 1 mL of 0.1 kmol/m³ Ca(NO₃)₂ + 1 L of 0.01 kmol/m³ HF
- (d) 1 mL of 0.1 kmol/m³ Ca(NO₃)₂ + 1 L of 0.01 kmol/m³ NaF
- (e) 5 mL of 0.004 kmol/m³ AgNO₃ + 15 mL of a solution containing 1.5 mg Br¹⁻ ions
- 10. How many mg of Pb^{2+} must be present in 10.0 mL of a 0.135 kmol/m³ NaCl solution for $PbCl_2$ to precipitate?
- 11. A solution contains 0.01 kmol/m³ TINO₃ and 0.01 kmol/m³ AgNO₃.
- (a) Which compound precipitates first when Nal is slowly added to 100 mL of this solution?
- (b) How many mg of this ion remain unprecipitated when the second compound begins to precipitate?
- 12. A litre of solution contains 100 mg of Ba^{2+} and 10.0 g of Sr^{2+} . Within what range must the concentration of CrO_4^{2-} be to precipitate Ba^{2+} without precipitating any Sr^{2+} ?
- 13. Does a precipitate of Mg(OH)₂ form when 10.0 mL of a 0.10 kmol/m³ NH₃ solution containing 3.0 g of NH₄CI is mixed with 10.0 mL of 0.10 kmol/m³ MgCl₂ solution?
- 14. Does a precipitate of Mg(OH) $_2$ form when 10.0 mL of 0.050 kmol/m³ aqueous NH₃ is mixed with 10.0 mL of 0.15 kmol/m³ MgCl₂
- 15. Barium nitrate reacts with potassium sulfate solution and forms insoluble $BaSO_4$. What volume of 0.40 kmol/m³ $Ba(NO_3)_2$ solution is required to precipitate effectively the sulfate ions in 25 mL of 0.80 kmol/m³ of K₂SO₄ solution?
- 16. What volume of 0.25 kmol/m³ KCl solution is required to precipitate effectively the silver ions from 160.0 mL sample of 0.60 kmol/m³ AgNO₃ solution?
- 17. What mass of silver chloride can be precipitated from a silver nitrate solution by 200 mL of a solution of 0.50 kmol/m³ CaCl₂
- 18. A sample of an unknown chloride with a mass of 0.210 g is treated with 30.00 mL of 0.100 kmol/m³ AgNO₃. The precipitate is filtered and the excess silver in the filtrate is titrated with 5.65 mL of 0.0900 kmol/m³ KSCN. What is the percentage of Cl in the sample?
- 19. A solution of KI contains 0.200 g KI in 50.00 mL of solution. If 25.00 mL of 0.1 00 kmol/m³ AgNO₃ is added to the KI solution, how many mL of 0.110 kmol/m³ KSCN are needed for back titration?

Answers for Ksp Problems

$$\begin{bmatrix} 1, a \\ 2, 5 \times 10^{-5} \\ b \\ 7, 87 \times 10^{-8} \\ c \\ 3, 73 \times 10^{-3} \\ d \\ 3, 66 \times 10^{-9} \\ \end{bmatrix}$$

$$\begin{bmatrix} a_{3}^{+} \end{bmatrix} = 1.41 \times 10^{-6} \text{ mol}/L$$

$$\begin{bmatrix} a_{3}^{+} \end{bmatrix} = 1.41 \times 10^{-6} \text{ M} \\ \begin{bmatrix} a_{3}^{+} \end{bmatrix} = 1.41 \times 10^{-6} \text{ M} \\ \begin{bmatrix} a_{3}^{+} \end{bmatrix} = 1.41 \times 10^{-6} \text{ M} \\ \end{bmatrix}$$

$$b \\ s = 3.87 \times 10^{-5} \text{ mol}/L \\ \begin{bmatrix} Ba^{2+} \end{bmatrix} = 3.87 \times 10^{-5} \text{ M} \\ \begin{bmatrix} 50\mu^{2} \end{bmatrix} = 3.87 \times 10^{-5} \text{ M} \\ \begin{bmatrix} 50\mu^{2} \end{bmatrix} = 3.87 \times 10^{-5} \text{ M} \\ \end{bmatrix}$$

$$c \\ s = 6.08 \times 10^{-10} \text{ mol}/L \\ \begin{bmatrix} Fe^{2+} \end{bmatrix} = 6.08 \times 10^{-10} \text{ M} \\ \begin{bmatrix} 52^{-} \end{bmatrix} = 6.08 \times 10^{-10} \text{ M} \\ \begin{bmatrix} 52^{-} \end{bmatrix} = 6.08 \times 10^{-10} \text{ M} \\ \begin{bmatrix} 0H^{-} \end{bmatrix} = 2.62 \times 10^{-17} \text{ mol}/L \\ \begin{bmatrix} Mg^{2+} \end{bmatrix} = 1.31 \times 10^{-17} \text{ mol}/L \\ \begin{bmatrix} Mg^{2+} \end{bmatrix} = 6.84 \times 10^{-17} \text{ M} \\ \begin{bmatrix} 52^{-} \end{bmatrix} = 3.42 \times 10^{-17} \text{ mol}/L \\ \begin{bmatrix} Ga^{2+} \end{bmatrix} = 2.31 \times 10^{-17} \text{ mol}/L \\ \begin{bmatrix} Ca^{2+} \end{bmatrix} = 2.31 \times 10^{-14} \text{ mol}/L \\ \begin{bmatrix} Ca^{2+} \end{bmatrix} = 2.31 \times 10^{-14} \text{ mol}/L \\ \begin{bmatrix} F^{1-} \end{bmatrix} = 4.61 \times 10^{-14} \text{ M} \\ \end{bmatrix} \\ Fe^{3+} \end{bmatrix} = 3.35 \times 10^{-24} \text{ mg/mL} \\ b \\ D \\ Fe^{3+} \end{bmatrix} = 3.35 \times 10^{-24} \text{ mg/mL} \\ c \\ D \\ EM \\ \end{bmatrix} = 2.19 \times 10^{-2} \text{ mg/mL}$$

5.a)
$$[a_{g}+] = 6.15 \times 10^{-11} M$$

b) $[a_{g}+] = 2.26 \times 10^{-24} M$
c) $[a_{g}+] = 7.67 \times 10^{-3} M$
d) $[a_{g}+] = 1.13 \times 10^{-5} M$
e) $[a_{g}+] = 5.42 \times 10^{-6} M$
6.a) $49.4 \text{ mg T} II$
b) $0.144 \text{ mg T} II$
c) $0.737 \text{ mg T} II$
7. $s = \emptyset$
8. $[a_{g}+] = 1.44 \times 10^{-4} M$
 $[cle^{1}-] = 0.125 M$
(very tough problem)
9. $a) \in b$ no ppte
c) $di = 0$ ppte forms
10. more than 1.82 mg Pb^{24}

Solubility Product Constants

$AgC_2H_3O_2$	2.5×10^{-3}	Cu ₂ S	1.6 x 10 ⁻⁴⁸
AgBr	7.7 x 10 ⁻¹³	FeS	3.7 x 10 ⁻¹⁹
AgBrO ₃	6 x 10 ⁻⁵	Fe(OH) $_{\scriptscriptstyle 3}$	6.0 x 10 ⁻³⁸
Ag ₂ CO ₃	8.2 x 10 ⁻¹²	HgS	3 x 10 ⁻⁵³
AgCl	1.8 x 10 ⁻¹⁰	MgCO ₃	2.5 x 10^{-5}
Ag_2CrO_4	1.1 x 10 ⁻¹²	MgC_2O_4	8.6 x 10 ⁻⁵
AgCN	2.0 x 10 ⁻¹²	Mg(OH) $_{\rm 2}$	9.0 x 10^{-12}
AgI	8.3 x 10 ⁻¹⁷	MnS	1.4 x 10 ⁻¹⁵
AgIO ₃	3.1 x 10 ⁻⁸	NiS	1.8 x 10 ⁻²¹
Ag_2S	1.6 x 10 ⁻⁴⁹	PbCl ₂	1.6 x 10 ⁻⁵
$AgSO_4$	1.2 x 10 ⁻⁵	$PbCrO_4$	1.8 x 10 ⁻¹⁴
Al(OH) ₃	3 x 10 ⁻³³	Pb(IO ₃) ₂	2.6 x 10 ⁻¹³
$BaCO_3$	4.9 x 10 ⁻⁹	PbI ₂	7.1 x 10 ⁻⁹
$BaCrO_4$	1.2 x 10 ⁻¹⁰	$PbSO_4$	1.6 x 10 ⁻⁸
$BaSO_4$	1.5×10^{-9}	PbS	8.4 x 10 ⁻²⁸
$CaCO_3$	4.8 x 10 ⁻⁹	$SrCO_3$	7×10^{-10}
CaC_2O_4	2.3 x 10 ⁻⁹	$SrCrO_4$	3.6 x 10 ⁻⁵
CaF_2	4.9 x 10 ⁻¹¹	$SrSO_4$	7.6 x 10^{-7}
$CaSO_4$	2.6 x 10 ⁻⁵	TlBr	3.6 x 10 ⁻⁶
CdS	1.0 x 10 ⁻²⁸	TlCl	1.9 x 10 ⁻⁴
CoS	1.0 x 10 ⁻²¹	TlI	8.9 x 10 ⁻⁸
CuCl	3.2 x 10 ⁻⁷	Zn (OH) $_2$	2 x 10 ⁻¹⁴
Cu(OH) $_2$	1.6 x 10 ⁻¹⁹	ZnS	4.5×10^{-24}
CuS	8.5 x 10^{-45}		