K_{sp} Problems (SCH 4U)

- 1. Calculate the $K_{\rm sp}$ for each of the salts whose solubility is listed below.
 - (a) $CaSO_4$ solubility = 5.0 x 10^{-3} mol/L
 - (b) MgF₂ solubility = $2.7 \times 10^{-3} \text{ mol/L}$
 - (c) $AgC_2H_3O_2$ solubility = 10.2 p.p.m.
 - (d) SrF_2 solubility = 122 p.p.m.
- Calculate the solubility in mol/L of each of these salts, determine the concentration of all ions and find the the concentration of each cation in p.p.m. in each of the saturated solutions
 - (a) AgCN $K_{sp} = 2 \times 10^{-12}$
 - (b) $BaSO_4$ $K_{sp} = 1.5 \times 10^{-9}$
 - (c) FeS $K_{sp} = 3.7 \times 10^{-19}$
 - (d) Mg(OH)₂ $K_{sp} = 9 \times 10^{-12}$
 - (e) Ag_2S $K_{sp} = 1.6 \times 10^{-49}$
 - (f) CaF_2 $K_{sp} = 4.9 \times 10^{-11}$
- 3. For each of these substances, calculate the concentration of metallic ion in p.p.m. that can remain at equilibrium in a solution having a $[OH^{-1}] = 1.0 \times 10^{-4} \text{ mol/L}$
 - (a) $Cu(OH)_2$ $K_{sp} = 1.6 \times 10^{-19}$
 - (b) Fe(OH)₃ $K_{sp} = 6.0 \times 10^{-38}$
 - (c) Mg(OH)₂ $K_{sp} = 9.0 \times 10^{-12}$
- 4. Calculate the $[Ag^+]$ in mol/L (M) needed to begin precipitation of each of these anions from solutions containing concentration of 500 p.p.m. for each anion. Please use K_{sp} values from the sheet provided in class.
 - (a) Br¹⁻
 - (b) S²⁻
 - (c) BrO₃¹⁻
 - (d) CrO₄²⁻
 - (e) IO₃¹⁻

5. How many mg of TlI can dissolve in 500 mL of:

- (a) water
- (b) 0.1 mol/L TlNO₃
- (c) 0.02 mol/L KI
- 6. In which of these reactions does a precipitate form? Show a sequential proof (question 9 from old sheet).
 - (a) 10.0 mL of 0.01 mol/L $\rm AgNO_3$ + 10.0 mL of 0.10 mol/L $\rm Na_2SO_4$
 - (b) 1 mg of MgCl $_2$ + 1 L of 0.01 mol/L Na $_2$ C $_2$ O $_4$
 - (c) 1 mL of 0.1 mol/L Ca(NO $_3$) $_2$ + 1 L of 0.01 mol/L HF
 - (d) 1 mL of 0.1 mol/L Ca(NO₃)₂ + 1 L of 0.01 mol/L NaF
 - (e) 5 mL of 0.004 mol/L ${\rm AgNO_3}$ + 15 mL of a solution containing 1.5 mg Br $^{1-}$ ions