Acid Base Equilibrium Quantitative Problems

1. (a) (b) (c) (d) (e)	Calculate the $[H_3O^{1+}]$, $[OH^{1-}]$, pH, as 1.0 kmol/m ³ HCl 0.50 kmol/m ³ HNO ₃ 0.0020 kmol/m ³ HCIO ₄ 1.5 X 10 ⁻⁴ kmol/m ³ KOH a solution prepared by dissolving 0.040 g NaOH 2.0 L of solution	nd pOH (f) (g)	of these solutions: a solution prepared by diluting 1.0 mL of 0.20 kmol/m ³ HCl to a total volume of 5.0 L a solution made by dissolving 0.10 mol Na ₂ O in 1.0 L of solution
2. (a) (b) (c)	Calculate the [H ₃ 0 ¹⁺], pH, and percessolutions: 1.0 kmol/m ³ HCN 0.001 kmol/m ³ HCN 1.0 kmol/m ³ HF	entage (d) (e) (f)	dissociation of these 0.50 kmol/m ³ HNO ₂ 0.5 kmol/m ³ HCHO ₂ 0.50 kmol/m ³ H ₃ BO ₃
3.	A solution of hydrofluoric acid contains 2.0 g of HF per litre and has a pH of 2.2 What is the dissociation constant for HF?		
4.	A weak acid, HX, is a weak monoprotic acid. A 0.100 kmol/m ³ solution is 6.0% dissociated. What is the dissociation constant for the acid?		
5. (a) (b) (c)	A 1.0 X 10-3 kmol/m ³ solution of a weak acid, HX, is 20.0% dissociated.: What is the pH of the solution? What is the concentration of X^{1-} ? What is the dissociation constant for the acid?		
6.	Hypobromous acid (HBrO) has a dissociation constant of 2.0 X 10^{-9} . A solution of HBrO has a pH of 4.8. What is the concentration of the solution?		
7. (a) (b) (c)	Calculate the [OH-], pOH, and pH o 1.0 kmol/m ³ NH ₃ 0.10 kmol/m ³ aniline (C ₆ H ₅ NH ₂), 5.0 X 10^{-2} kmol/m ³ hydrazine (N ₂ H ₄)	f these (d) (e)	e solutions: 0.20 kmol/m ³ hydroxylamine (NH ₂ OH) 1.5 kmol/m ³ trimethylamine ((CH ₃) ₃ N)
8. (a) (b) (c)	Calculate the [OH ¹⁻], pOH and pH of 0.10 kmol/m ³ Na ₂ SO ₃ 0.50 kmol/m ³ KCN 1.0 kmol/m ³ Na ₂ CO ₃	these (d) (e)	solutions: 0.05 kmol/m ³ NaC ₇ H ₅ O ₂ 0.2 kmol/m ³ NaClO.
9. (a) (b)	For this buffer solution: What is the pH of a solution made by combining 0.60 mol of acetic acid with 0.40 mol of sodium acetate in enough water to make one litre of solution? What is the pH of this solution if four additional litres of water is		
(/	added to it?		

10. What concentration of sodium acetate is required to prepare a solution in which the pH is 5.0 and the acetic acid is 0.10 $\rm kmol/m^3.$

- 11. What mass of $\rm NH_4Cl$ must be added to 0.500 L of 1.0 $\rm kmol/m^3~NH_3$ solution to yield a solution with a pH of 9.0? Assume no change in volume occurs.
- 12. A buffer solution is prepared by adding 1.0 mol of $\rm NH_4Cl$ to 1 litre of a solution containing 1.0 mol $\rm NH_3.$
- (a) What is the pH of the solution?
- (b) What is the pH of the solution resulting from the addition of 1.0 mmol of HCl to 10.0 mL of the buffer? Assume no volume change occurs.
- (c) What is the pH of the solution resulting from the addition of 1.0 mmol NaOH to 1000 mL of the buffer? Assume no volume change.
- (d) How many mL of 6 M HCI would be required to change the pH of one litre of buffer by 1 pH unit?