ĸ	С	A	т
17	5	26	8

Name:_____

<u>A Quest for Quantum</u>

1. Match each definition or description with the best word

					_
responsible for the "discovery" of the principle quantum number	A	abso: spect	rptic tra	on	
responsible for the discovery of the nucleus	В	Aufba Prino	au ciple	9	
distinct wavelengths of light either emitted or absorbed (from a continuous spectra wavelength light source)	С	Bohr			
no two electron may share the same set of all four quantum numbers, at least one quantum number must be different	D	emis: spect	sion tra		
gradual increase in photon energy can be used to determine the binding energy of an electron to metal atoms on the surface of a metal target	E	Heise unce prine	enber rtair ciple	rg nty e	
when electrons are added to a bare nucleus they will position themselves as close to the nucleus as possible	F	Hund	's Ru	ıle	
caused be multiple different combinations of $n_{\rm i}$ \clubsuit $n_{\rm f}$ transitions such that $n_{\rm f}$ < $n_{\rm i}$	G	line	spec	ctra	
the energy contained in atoms is not continuous (any value possible), but instead exists as simple multiples of small discrete amounts of energy	Η	Paul: Exclu Princ	i usior ciple	1	
responsible for the discovery of the electron	I	photo effeo	pelec ct	ctric	
can be observed whenever a continuous spectra light source is placed behind a gas phase sample of an element or compound or any combination there of	J	quant hypot	tum thesi	LS	
electronic states that have the same value for n and 1 will fill one electron per m_1 value first in order to reduce electron-electron repulsion	K	Ruthe	erfor	cd	
it is not possible to know both the position and momentum of any small particle	L	Thom	son		
		ĸ	С	A	
		12			

2. Fill out the following table to show the possible quantum numbers in the first three princple energy levels for a one electron hydrogen. Be sure to use the Aufbau principle (as well as the Pauli exclusion principle)

n	1	m_1	m _s	# e ⁻ per energy level	# e ⁻ per energy shell

ĸ	С	A	Т
		8	

3. Do you know your quantum numbers?

Symbol	Allowed Values {Use Set Notation}	Physical Properties And/Or Name

4. For the second quantum number l (i.e. angular momentum) it has been suggested that there is the possibility of l=4. If this is so, how many different l=4 elements could exist (i.e what would the width of the "g" block be). What is the minimum number of de Broglie wavelengths that are required to produce an l=4? Make clear and concise reference to the other three quantum numbers in your answer.

/5T

/5K

K	С	A	Т
5			5

5. Write the complete electron configuration for the newly discovered element, Breenium, symbol Bn. The atomic number of this element is 117, making it a member of the halogen group.

element	n	1	m_1	m _s	end of config.
					5d ⁶
₅₆ Ba					
	4	2	-2	-1/2	
					5p ⁵
₅₉ Pr					
	5	3	-1	-1/2	
					6d ¹
58Ce					
	4		+3	-1/2	
					$4f^{11}$

6. Complete the following table.

of the periodic table.

7. If $m_s = -7/2$, -5/2, -3/2, -1/2, 0, +1/2, +3/2, +5/2, +7/2 (in other words there are 9 possible values for m_s). Use this information to predict the width of the s,p,d and f block and then use this information to determine the entire width

s 🕇	
р →	
d →	
f →	
total 🔿	

/3T

/10A

K	С	A	т
		10	3

8. The Rydberg constant is itself a combination of different constants. Use the constants listed to determine the correct value of the Rydberg constant. Then perform a complete unit analysis. Be sure to start with the format "units ="

$$R = \frac{-e^4m}{8\varepsilon_o^2h^3c}$$

e = 1.6022 x 10⁻¹⁹ C (fundamental unit of charge) m = 9.110 x 10⁻³¹ kg (resting mass of an electron) π = 3.1415926536 (circumference / diameter for a circle) ε_o = 8.854 x 10⁻¹² C²N⁻¹m⁻² (dielectric constant) h = 6.626 x 10⁻³⁴ Js (Planck's constant c = 3.00 x 10⁸ ms⁻¹ (speed of light)

$$J = \frac{kgm^2}{s^2} \qquad N = \frac{kgm}{s^2}$$

/3A

/5A

K	С	A	Т
		8	

$$\frac{1}{\lambda} = 1.09737 \text{ x } 10^7 \text{ m}^{-1} \left[\left(\frac{1}{n_i^2} \right) - \left(\frac{1}{n_f^2} \right) \right]$$

Show a calculation for the ninth line in the Balmer series. Show your calculation for a situation in which the atom absorbs the energy of an incoming photon. Show either a separate conversion to express your final answer in nanometers (1 x 10^9 nm = 1 m) OR a conversion factor that adjusts the unit in the above equation to nm⁻¹. Be sure to use proper format for all parts of this question.

/5C

10. Using the equation from question 9, determine the initial and final states for:

- a) emission of 97.20 nm
- b) absorption of 1944.04 nm
- c) absorption of 396.91 nm
- d) emission of 1004.67 nm

wavelength	emitted or absorbed	n _i	n _f
97.20 nm	emitted		
1944.04 nm	absorbed		
396.91 nm	absorbed		
1004.67 nm	emitted		

ĸ	С	A	т
	5		8

9.

/8T