Name:_____

<u>A Quest for Quantum</u>

1. Match each definition or description with the best word

С	responsible for the "discovery" of the principle quantum number	A	absorption spectra
K	responsible for the discovery of the nucleus	В	Aufbau Principle
G	distinct wavelengths of light either emitted or absorbed (from a continuous spectra wavelength light source)	С	Bohr
Н	no two electron may share the same set of all four quantum numbers, at least one quantum number must be different	D	emission spectra
I	gradual increase in photon energy can be used to determine the binding energy of an electron to metal atoms on the surface of a metal target	E	Heisenberg uncertainty principle
В	when electrons are added to a bare nucleus they will position themselves as close to the nucleus as possible	F	Hund's Rule
D	caused be multiple different combinations of $n_{\rm i}$ \clubsuit $n_{\rm f}$ transitions such that $n_{\rm f}$ < $n_{\rm i}$	G	line spectra
J	the energy contained in atoms is not continuous (any value possible), but instead exists as simple multiples of small discrete amounts of energy	Н	Pauli Exclusion Principle
L	responsible for the discovery of the electron	I	photoelectric effect
A	can be observed whenever a continuous spectra light source is placed behind a gas phase sample of an element or compound or any combination there of	J	quantum hypothesis
F	electronic states that have the same value for n and 1 will fill one electron per m_1 value first in order to reduce electron-electron repulsion	K	Rutherford
E	it is not possible to know both the position and momentum of any small particle	L	Thomson

2. Fill out the following table to show the possible quantum numbers in the first three princple energy levels for a one electron hydrogen. Be sure to use the Aufbau principle (as well as the Pauli exclusion principle)

n	1	mı	m _s	# e ⁻ per energy level	# e ⁻ per energy shell
1	0	0	-1/2		2
1	0	0	+1/2	S	
2	0	0	-1/2		2
2	0	0	+1/2	S	
2	1	-1	-1/2		6
2	1	-1	+1/2		
2	1	0	-1/2	_	
2	1	0	+1/2	Р	
2	1	1	-1/2		
2	1	1	+1/2		
3	0	0	-1/2		2
3	0	0	+1/2	5	
3	1	-1	-1/2		6
3	1	-1	+1/2		
3	1	0	-1/2	~	
3	1	0	+1/2	P	
3	1	1	-1/2		
3	1	1	+1/2		
3	2	-2	-1/2		10
3	2	-2	+1/2		
3	2	-1	-1/2		
3	2	-1	+1/2		
3	2	0	-1/2		
3	2	0	+1/2	a	
3	2	1	-1/2		
3	2	1	+1/2		
3	2	2	-1/2		
3	2	2	+1/2		

Symbol	Allowed Values {Use Set Notation}	Physical Properties And/Or Name
n	{n∈ I n>0}	principle Q.N., # of de Broglie wavelength
1	{l∈I 0≤l <n}< td=""><td>angular momentum Q.N.</td></n}<>	angular momentum Q.N.
m1	$\{\mathbf{m}_1 \in \mathbf{I} \mid -\mathbf{l} \leq \mathbf{m}_1 \leq \mathbf{l}\}$	magnetic Q.N.
m _s	${m_s \in R m_s = \pm 1/2}$	spin Q.N.

- 4. For the second quantum number 1 (i.e. angular momentum) it has been suggested that there is the possibility of l=4. If this is so, how many different l=4 elements could exist (i.e what would the width of the "g" block be). What is the minimum number of de Broglie wavelengths that are required to produce an l=4? Make clear and concise reference to the other three quantum numbers in your answer.
- if l = 4, then $m_1 = \{-4, -3, -2, -1, 0, +1, +2, +3, +4\}$ which is 9 possible values (i.e. m_1 follows the pattern of 1,3,5,7,9,etc)
- for each m_1 possibility, there are 2 possible m_s values i.e. $m_s = \{-\frac{1}{2}, +\frac{1}{2}\}$
- therefore 9 x 2 = 18 gives the width of the "g" block
- the "g" block cannot occur until n = 5 because the value of 1 must be less than the value of n (see above allowed values)

5. Write the complete electron configuration for the newly discovered element, Breenium, symbol Bn. The atomic number of this element is 117, making it a member of the halogen group.

6. Complete the following table.

element	n	1	m_1	m _s	end of config.
Os	5	2	0	+1/2	5d ⁶
₅₆ Ba	6	0	0	+1/2	6s ²
Y	4	2	-2	-1/2	4 d ¹
I	5	1	+1	-1/2	5p ⁵
₅₉ Pr	4	3	-2	-1/2	4f ³
Np	5	3	-1	-1/2	5 f ⁵
Lr	6	2	-2	-1/2	6d1
58Ce	4	3	-3	+1/2	4f ²
Tm	4	3	+3	-1/2	4f ¹³
Но	4	3	+2	-1/2	$4f^{11}$

7. If $m_s = -7/2$, -5/2, -3/2, -1/2, 0, +1/2, +3/2, +5/2, +7/2 (in other words there are 9 possible values for m_s). Use this information to predict the width of the s,p,d and f block and then use this information to determine the entire width of the periodic table.

s 🗲	1 (pos. m_1) x 9 (pos. m_s) = 9
р →	3 (pos. m_1) x 9 (pos. m_s) = 27
d →	5 (pos. m_1) x 9 (pos. m_s) = 45
f →	7 (pos. m_1) x 9 (pos. m_s) = 63
total 🔿	144

8. The Rydberg constant is itself a combination of different constants. Use the constants listed to determine the correct value of the Rydberg constant. Then perform a complete unit analysis. Be sure to start with the format "units ="

$$R = \frac{-e^4 m}{8\varepsilon_0^2 h^3 c}$$

e = 1.6022 x 10^{-19} C (fundamental unit of charge) m = 9.110 x 10^{-31} kg (resting mass of an electron) π = 3.1415926536 (circumference / diameter for a circle) ε_o = 8.854 x 10^{-12} C²N⁻¹m⁻² (dielectric constant) h = 6.626 x 10^{-34} Js (Planck's constant c = 3.00 x 10^8 ms⁻¹ (speed of light)

$$J = \frac{kgm^2}{s^2} \qquad N = \frac{kgm}{s^2}$$

$$\frac{1}{\lambda} = 1.09737 \text{ x } 10^7 \text{ m}^{-1} \left[\left(\frac{1}{n_i^2} \right) - \left(\frac{1}{n_f^2} \right) \right]$$

Show a calculation for the ninth line in the Balmer series. Show your calculation for a situation in which the atom absorbs the energy of an incoming photon. Show either a separate conversion to express your final answer in nanometers (1 x 10^9 nm = 1 m) OR a conversion factor that adjusts the unit in the above equation to nm⁻¹. Be sure to use proper format for all parts of this question.

$$\frac{1}{\lambda} = 1.09737 \text{ x } 10^7 \text{ m}^{-1} \left[\left(\frac{1}{n_i^2} \right) - \left(\frac{1}{n_f^2} \right) \right]$$
$$\frac{1}{\lambda} = 1.09737 \text{ x } 10^7 \text{ m}^{-1} \left[\left(\frac{1}{2^2} \right) - \left(\frac{1}{11^2} \right) \right]$$
$$\frac{1}{\lambda} = 1.09737 \text{ x } 10^7 \text{ m}^{-1} \left[0.24173 \right]$$
$$\frac{1}{\lambda} = 2652733 \text{ m}^{-1}$$
$$\lambda = 3.7697 \text{ x } 10^{-7} \text{ m}$$

$$3.7697 \ge 10^{-7} \le \frac{1 \ge 10^9 \ \text{nm}}{1 \ \text{m}} = 376.97 \ \text{nm}$$

10. Using the equation from question 9, determine the initial and final states for:

- emission of 97.20 nm a)
- absorption of 1944.04 nm absorption of 396.91 nm b)
- C)
- emission of 1004.67 nm d)

wavelength	emitted or absorbed	n _i	n _f
97.20 nm	emitted	4	1
1944.04 nm	absorbed	4	8
396.91 nm	absorbed	2	7
1004.67 nm	emitted	7	3