Quantum Chemistry

So far:

- Atom (basic unit)
- Dalton's Model of the atom (different types of atoms)
- Thomson Model (add electrons)
- Rutherford (add the nucleus)

Bohr:

- added fixed energy orbits for electrons at fixed distance from the nucleus
- the reason for fixed orbits is due to resonant de Broglie wave patterns which introduces in integer value to the description of the hydrogen atom (i.e. n = 1,2,3,4,5 etc) where n is the number of deBroglie wave lengths
- this is a quantum mechanical property

Quantum Mechanical Model:

- uses the same value of n as did Bohr, but with <u>MUCH</u> more sophisticated mathematics
- it also introduces three more quantum numbers (in addition to n)
- best description we have at present of the atom and how electrons behave in the atom – lays the theoretical basis for the shape of the periodic table
- in this model electrons are described using wave functions (i.e. the electron is a wave not a particle)

QUANTUM NUMBERS: there are four quantum numbers that are used to describe all behaviours of electrons confined to an atom.

1. Principle Quantum Number

- has the symbol n (this is the n in the equations we have used)
- represent the number of de Broglie wavelength for the orbiting electron
- allowed values are: $\{n \in I \mid 0 < n\}$

2. Angular Momentum Quantum Number

- has the symbol ℓ
- represents the angular momentum of the orbiting electrons
- allowed values are: { $\boldsymbol{\ell} \in I \mid 0 \leq \boldsymbol{\ell} < n$ }
- eg if $\boldsymbol{n} = 1$ $\boldsymbol{\ell} = 0$

if n = 2 l = 0, 1

if
$$n = 3$$
 $\ell = 0, 1, 2$

other names for 1 are as follows:

$\pmb{\ell}$ value	0	1	2	3
other	S	р	d	f
name				

- <u>Magnetic Quantum Number:</u>

- has the symbol m_{ℓ}
- represents the magnetic field that is generated by the motion of the orbiting electron (electromagnetic principle)

- allowed values: {
$$m_{\ell} \in I \mid -\ell \leq m_{\ell} \leq \ell$$
 }

eq if $\boldsymbol{n} = 1$ $\boldsymbol{\ell} = 0$ $m_{\ell} = 0$ if $\boldsymbol{n} = 2$ $\boldsymbol{\ell} = 0$ $m_{\ell} = 0$ $\ell = 1$ $m_{\ell} = -1, 0, 1$ $m_{\ell} = 0$ if $\boldsymbol{n} = 3$ $\boldsymbol{\ell} = 0$ $\ell = 1$ $m_{\ell} = -1, 0, 1$ **l** = 2 $m_{\ell} = -2, -1, 0, 1, 2$ if $\boldsymbol{n} = 4$ $\boldsymbol{\ell} = 0$ $m_{\ell} = 0$ **l** = 1 $m_{\ell} = -1, 0, 1$ **l** = 2 $m_{\ell} = -2, -1, 0, 1, 2$ **l** = 3 $m_{\ell} = -3, -2, -1, 0, 1, 2, 3$

4. Spin Quantum Number:

- symbol is m_s
- the only independent quantum number inherent to the electron
- represents the spin possessed by the electron (like the spin of the earth as it orbits)
- allowed values: $\{m_s \in \mathbb{R} \mid m_s = \pm \frac{1}{2}\}$

Additional Points:

- Aufbau Principle: when adding electrons to a bare nucleus to build a neutral atom, electrons will fill the lowest atomic energy levels first (build outwards)
- Pauli Exclusion Principle: no two electrons in a multi-electron atom can have all four quantum numbers the same (this would place the electrons in exactly the same place), at least one quantum number must be different
- Hund's Rule: electrons of equal energy (same n
 value) will fill orbitals one electron at a time
 first)

Other Terms Concepts or Models You Should Know:

- Heisenberg uncertainty principle
- photoelectric effect
- quantum hypothesis
- line spectra
- absorption spectra
- emission spectra
- Thomson
- Rutherford
- Bohr