Stoichiometry With Solutions

1. What volume of 0.5 M $\rm H_3PO_4$ is required to fully react with 250 g of Na_2CO_3? What amount of water is produced by this reaction?

 $H_3PO_4(aq) + Na_2CO_3(s) \rightarrow Na_3PO_4(s) + H_2O(1) + CO_2(g)$

2. What volume of 0.25 M lead(II) nitrate is required to consume 500 g of pure silver? What mass of lead metal will form?

 $Pb(NO_3)_2(aq) + Ag(s) \rightarrow Pb(s) + AgNO_3$

3. 115 g of aluminum sulphate is formed through a reaction between 2250 ml of aluminum nitrate solution and sufficient ammonium sulphate solution. What is the concentration of the aluminum nitrate solution?

 $(NH_4)_2SO_4(aq) + Al(NO_3)_3(aq) \rightarrow Al_2(SO_4)_3(s) + NH_4NO_3(aq)$

4. If 5.00 g of KHSO_3 is fully reacted by 208 ml of calcium hydroxide solution, what is the concentration of the calcium hydroxide solution?

 $Ca(OH)_2(aq) + KHSO_3(s) \rightarrow Ca(HSO_3)_2(aq) + KOH(aq)$

If only 100 mL of the calcium hydroxide solution was used, what mass of $\rm KHSO_3$ would be consummed?

5. In one method of gold purification, potassium gold(III) cyanide is reacted with pure magnesium metal. If 56 000 L of $K_3Au(CN)_6$ solution (yes that is a very large volume) can be fully extracted by 25.2 g of magnesium, what is the concentration of the solution? What mass of pure gold would form?

 $K_{3}Au(CN)_{6}(aq) + Mg(s) \rightarrow Au(s) + Mg(CN)_{2}(aq) + KCN(aq)$

Answers:	1.	3.14 L H ₃ PO ₄	2.36 mol H_2O
	2.	9.27 L Pb(NO_3) ₂	480 g Pb
	3.	0.302 M	
	4.	0.100 M	2.40 g KHSO ₃
	5.	1.23 x 10 ⁻⁵ M	306 g Au