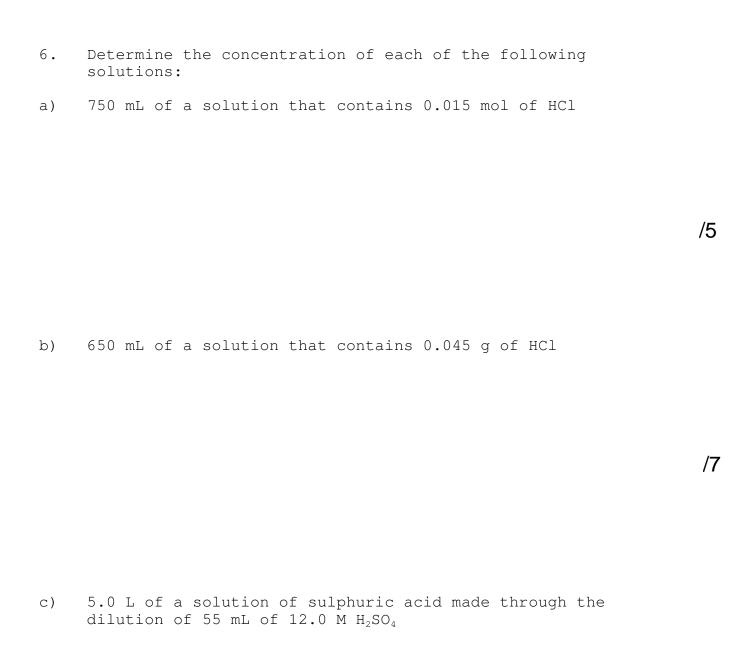
/95 = %

SCH 4C Stoichiometry Unit Test

- 1. Balance the following equations
- a) $MgSO_4$ + HCl \rightarrow $MgCl_2$ + H_2SO_4
- b) $C_{10}H_{22} + O_2 \rightarrow CO_2 + H_2O$
- 2. Perform each unit conversion. Be sure to use complete and extended units:
- a) convert 80.4 g of CO_2 to number of molecules of CO_2
- b) convert 3.65 x 10^{23} Cl atoms to the equivalent mass of $HSiCl_3$
- What mass of potassium phosphate is required to form 54.0 g of strontium phosphate?
 - $Sr(NO_3)_2 + K_3PO_4 \rightarrow Sr_3(PO_4)_2 + KNO_3$


4. What amount of iron (III) nitrate is require to from 250.0 g of iron(III) carbonate

 Na_2CO_3 + Fe(NO_3)₃ \rightarrow Fe₂(CO_3)₃ + $NaNO_3$

/6

5. What is the maximum possible mass of chromium(III) hydroxide that can form from 42.0 g of chromium(VI) sulphate and 25.0 g of sodium hydroxide

 $Cr_2(SO_4)_3$ + NaOH \rightarrow $Cr(OH)_3$ + Na₂SO₄

7. Determine the mass of Na_2CO_3 required to make 2.0 L of 0.25 M sodium carbonate solution.

/6

8. Determine the concentration of solution that would result if 85.0 g of NaHCO₃ is dissolved in 1.5 L of water. What will this concentration become if 8.0 L of water is added?

9. What is the maximum possible mass of lead(II) iodide precipitate that could form from the reaction of 250 mL of 0.25 M lead(II) nitrate mixed with 300 mL of 0.35 M potassium iodide?

 $Pb(NO_3)_2(aq) + KI(aq) \rightarrow PbI_2(s) + KNO_3(aq)$

/18

BONUS: Determine the concentration of potassium ion in p.p.m. for 250 mL of solution that contains a mass of 0.0015 g of $\rm K_2CO_3$