/95 = %

Name:_____

<u>SCH 4C</u> Stoichiometry Unit Test

- 1. Balance the following equations
- a) Li_2CO_3 + FeCl₃ \rightarrow LiCl + Fe₂(CO₃)₃ /2

b) C_8H_{18} + O_2 \rightarrow CO_2 + H_2O

- 2. Perform each unit conversion. Be sure to use complete and extended units:
- a) convert 72.9 g of NH_3 to number of molecules of NH_3

b) convert 8.79 x 10^{24} H atoms to the equivalent mass of CH_4

/7

/5

3. What mass of strontium nitrate is required to form 890.0 g of strontium phosphate?

 $Sr(NO_3)_2$ + K_3PO_4 \rightarrow $Sr_3(PO_4)_2$ + KNO_3

4. What amount of sodium carbonate is require to form 450.0 g of iron(III) carbonate

 Na_2CO_3 + $Fe(NO_3)_3$ \rightarrow $Fe_2(CO_3)_3$ + $NaNO_3$

/6

5. What is the maximum possible mass of chromium(III) hydroxide that can form from 40.0 g of chromium(III) sulphate and 22.0 g of sodium hydroxide

 $Cr_2(SO_4)_3$ + NaOH \rightarrow $Cr(OH)_3$ + Na₂SO₄

/16

- 6. Determine the concentration of each of the following solutions:
- a) 550 mL of a solution that contains 0.025 mol of HCl

/5

b) 750 mL of a solution that contains 0.025 g of HCl

c) 4.0 L of a solution of sulphuric acid made through the dilution of 25 mL of 12.0 M $\rm H_2SO_4$

7. Determine the mass of Na_2CO_3 required to make 4.0 L of 0.1 M sodium carbonate solution.

/6

8. Determine the concentration of solution that would result if $45.0 \text{ g of NaHCO}_3$ is dissolved in 1.0 L of water. What will this concentration become if 4.0 L of water is added?

9. What is the maximum possible amount of lead(II) iodide precipitate that could form from the reaction of 500 mL of 0.25 M lead(II) nitrate mixed with 400 mL of 0.30 M potassium iodide?

 $Pb(NO_3)_2(aq) + KI(aq) \rightarrow PbI_2(s) + KNO_3(aq)$

/18

BONUS: Determine the concentration of potassium ion in p.p.m. for 250 mL of solution that contains a mass of 0.0015 g of $\rm K_2CO_3$