Rules for Determining Oxidation States

eg Fe O_2 Br $_2$ Na Au H_2 Ag

Oxidation state of a simple ion is the ionic chargesimple ion is a one element only ion

 $\text{eg} \quad \stackrel{2+}{\text{Mg}^{2+}} \stackrel{2-}{\text{O}^{2-}} \quad \stackrel{1-}{\text{Cl}^{1-}} \stackrel{2+}{\text{Fe}^{2+}} \stackrel{3+}{\text{Fe}^{3+}} \stackrel{3-}{\text{N}^{3-}} \quad \stackrel{2-}{\text{S}^{2-}}$

3. Hydrogen in a compound has an oxidation state of 1+

eg ${\rm H_2O}$ ${\rm CH_4}$ ${\rm HCl}$ ${\rm H_2SO_4}$

(rare exceptions result in dangerously reactive substances

eg NaH LiAlH_4)

4. Oxidation State of Oxygen in a compound is 2-

eg CO_2 H_2O Fe_2O_3

(Rare exceptions use oxygen in a 1-

eg H_2O_2)

5. Group I, II and III elements follow the octet rule

eg MgO $^{2+}$ $^{1+}$ $^{3+}$ AlN

6. The sum of the oxidation states in a neutral molecule/compound must add up to zero.

 $^{\times 2}$ CO₂ therefore the carbon must be:

$$0 = x + 2(2-)$$

$$x = 4 +$$

4+2-CO₂

$$Fe_{2}O_{3}$$
 0 = 2(x) + 3(2-)
x = 3+

3+ 2-Fe₂O₃

$$CH_3OH$$
 $0 = x + 4(1+) + 2-$
 $x = 2-$

 $^{2-1+2-1+}$ CH $_{3}$ OH

7. The sum of the oxidation states for an ion must add to the ionic charge of the ion

eg
$$CO_3^{2-}$$
 $2- = x + 3(2-)$

$$x = 4 +$$

eg
$$NO_3^{x-2-}$$
 $1-=x+3(2-)$ $x=5+$

8. Tough combination example

Complete the following by showing all possible oxidation states: