Melting Points and Boiling Points of Organic Compounds

In order to melt or boil an organic compound the temperature (and related heat energy) must be increased to affect or completely overcome the intermolecular forces between molecules.

affect → melting overcome → boiling

The greater the intermolecular force the harder it is to melt or boil and hence the higher the m.p. and b.p.

There	are	three	types	of	intermolecular	forces:
-------	-----	-------	-------	----	----------------	---------

Name	Strength	Polarity	Special Conditions	
van der Waals (or	low	non-	C and H only	
London Force)		polar	atoms present	
dipole	medium	medium	C to O bonds, or	
interaction		polar	C to N bonds	
hydrogen bond	high	very polar	-OH groups (or - NH) stronger for carboxylic acids	

Two factors to consider:

- 1. The larger a molecule, the greater the van der Waal forces, the higher the m.p. or b.p.
- The greater the polarity, the higher the m.p. or b.p.

Both factors must be considered.

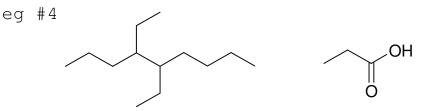
eg test questions:

State which of the two compounds have a higher m.p. or b.p. and why:

eg #1 ///

first because it is bigger, therefore greater van der Waals, etc.

eg #2 ____OH ____



first because a stronger more polar intermolecular force

second because the ketone has greater polarity

the first one because in this case, size beats polarity

Polarity Ranking								
non-polar low		medium	high	very high				
alkanes alkenes alkynes	ethers (amines)*	aldehydes ketones esters (amides)*	alcohols	carboxylic acids				

* Amines and amides can have high to very high polarity depending on what is attached to the hydrogen. If hydrogen is attached to the nitrogen the polarity increases due to the formation of hydrogen bond intermolecular forces.