APPLICATIONS AND PROBLEMS

- 3. Copy the following equations into your note-book, then balance them.
 - (a) $C_4H_{10} + O_2 \rightarrow CO_2 + H_2O_3$
 - (b) $AI_4C_3 + H_2O \rightarrow CH_4 + AI(OH)_3$
 - (c) $Ca_3(PO_4)_2 + SiO_2 + C \rightarrow$

$$P_4 + CaSiO_3 + CO_2$$

- (d) $(NH_4)_2Cr_2O_7 \rightarrow N_2 + Cr_2O_3 + H_2O$
- (e) $FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_2$
- (f) $NH_4NO_3 \rightarrow N_2O + H_2O$
- (g) $Bi_2O_3 + H_2 \rightarrow Bi + H_2O$
- (h) $FeCl_3 + (NH_4)_2S \rightarrow Fe_2S_3 + NH_4Cl$
- (i) $C_{10}H_{16} + CI_2 \rightarrow HCI + C$
- (i) Nal + MnO₂ + H₂SO₄ \rightarrow
 - $-Na_2SO_4 + MnSO_4 + H_2O + I_2$
- The following reactions are examples of synthesis reactions. Complete the equations by writing the formulas of the products, then balance the equations.
 - (a) Ca + N₂ →
 - (b) CaO + $CO_2 \rightarrow$
 - (c) Al + Br₂ \rightarrow
 - (d) Li + $O_2 \rightarrow$
 - (e) $P_4 + I_2 \rightarrow$
 - (f) BaO + H₂O →
- Complete the following equations for decomposition reactions, then balance the equations.
 - (a) HgO →
 - (b) MgCO₃ →
 - (c) HCl →
 - _(d) H₂O →
- Predict whether a reaction will take place for each of the following. Write a balanced equation for any reaction that does occur.
 - (a) Mg + Pb(NO₃)₂ \rightarrow
 - (b) Cu + ZnCl₂→
 - (c) $Cl_2 + Lil \rightarrow$
 - (d) $Sn + AgNO_3 \rightarrow$
- In each of the following reactions, a precipitate forms. Noting that all compounds of group I metals are soluble, write a balanced equation for each reaction. Identify the precipitate in each case.
 - (a) $AgNO_3 + K_2S \rightarrow$
 - (b) BaCl₂ + Na₂CO₃ →
 - (c) $Ca(NO_3)_2 + Li_2SO_4 \rightarrow$
 - (d) CoCl₂ + NaOH →
- Identify each of the following reactions as a synthesis, decomposition, single replacement, or double replacement reaction.
 - (a) $Mg(OH)_2 + 2HNO_3 \rightarrow Mg(NO_3)_2 + 2\dot{H}_2O$
 - (b) $H_2O + SO_3 \rightarrow H_2SO_4$
 - (c) FeCl₃ + 3NaOH → Fe(OH)₃ + 3NaC!
 - (d) $Cl_2 + Znl_2 \rightarrow ZnCl_2 + l_2$
 - (e) $H_2SO_4 + Mg \rightarrow MgSO_4 + H_2$
 - (f) $K_2O + H_2O \rightarrow 2KOH$
- (g) 2NaClO₃ → 2NaCl + 3O₃
- (h) $2AsCl_3 + 3H_2S \rightarrow As_2S_3 + 6HCI$
- (i) $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_3$
- (j) $3NaOH + H_3PO_4 \rightarrow Na_3PO_4 + 3H_2O$

- 9. The presence of small amounts of calcium chloride dissolved in water is responsible for one type of water hardness. Hard water does not form a lather with soap, but forms a scum instead. The calcium ions can be removed from the water by the addition of sodium carbonate. A precipitate of calcium carbonate forms, and this can be removed by filtration. Write a balanced equation for the reaction between calcium chloride and sodium carbonate.
- Each of the following is a neutralization reaction. Complete and balance each equation.
 - (a) KOH + HBr →

equation.

- (b) Ba(OH)₂ + HCl →
- (c) $Mg(OH)_2 + H_2SO_4 \rightarrow$
- (d) $AI(OH)_3 + HNO_3 \rightarrow$ (e) $Ca(OH)_2 + HCIO_4 \rightarrow$
- Write balanced equations for the following reactions, including the heat term in the
 - Hydrogen and chlorine react to form hydrogen chloride, releasing energy in the process.
 - (b) When sodium chlorate is heated, it decomposes into sodium chloride and oxygen.
 - (c) Calcium reacts with water, releasing hydrogen gas and forming a solution of calcium hydroxide. The temperature of the water increases during the reaction.
- Write balanced equations for the following reactions. Include the heat term with the equation.
 - (a) When calcium oxide is added to water, calcium hydroxide is formed. The temperature of the water increases during the reaction.
 - (b) The process of photosynthesis in plants produces glucose, C₆H₁₂O₆, and oxygen, from the raw materials carbon dioxide and water. Energy, usually from the sun, is absorbed during photosynthesis.
 - (c) Magnesium reacts with sulphuric acid, forming magnesium sulphate and releasing hydrogen gas. The solution becomes warmer as the reaction proceeds.
- 13: For each of the following reactions, write a balanced equation. Indicate to which of the four types of reaction studied in this chapter each reaction belongs.
 - (a) Ammonia gas and hydrogen chloride gas react to form ammonium chloride, a white solid.
 - (b) Sulphur dioxide, formed during the burning of sulphur-containing coal, may be removed from smokestack gases by passing the gases over solid calcium oxide. Calcium sulphite is formed by this reaction.
 - (c) If a bottle of hydrogen peroxide solution, H₂O₂, is left to stand at room temperature, oxygen gas is slowly released. After a period of time, the bottle contains only water.
 - (d) In some water treatment treatment plants, solutions of aluminum sulphate and calcium hydroxide are added to the water. A "sticky" precipitate of aluminum hydroxide forms. This removes some of the small particles in the water as it settles to the bottom.