STOICHIOMETRIC PROBLEMS

SHEET #6 - LIMITING EXCESS REAGENT PROBLEMS

1. 16.0 g of CaC_2 reacts with 42.0 g of H_2O according to the following reaction:

$$CaC_{2}(s) + 2H_{2}O(1) = > C_{2}H_{2}(g) + Ca(OH)_{2}(s)$$

- Determine which reactant in the limiting reagent. a)
- What mass of $C_2H_2(g)$ and $Ca(OH)_2(s)$ is produced. b)
- C) Calculate the excess mass of the excess reagent.
- 2. Consider the following reaction at S.T.P.

$$WO_3(s) + 3H_2(g) ==> W(s) + 3H_2O(s)$$

If 35 g of tungsten trioxide reacts with 15 L of H_2 at S.T.P., what mass of tungsten is produced?

What mass of H_2SO_4 can be produced from 50.0 g of SO_2 , 15.0 g O_2 and an 3. unlimited amount of H2O? The equation is:

$$2SO_2(g) + O_2(g) + 2H_2O(1) ==> 2H_2SO_4(aq)$$

40.0 L of ${\rm O_2}$ react with 19.6 L of methane (CH₄) at S.T.P. according to the reaction shown below. What volume of water and carbon dioxide are produced at S.T.P.

$$CH_4(g) + 2O_2(g) = > CO_2(g) + 2H_2O(g)$$

- What is the maximum mass of carbon dioxide that can be produced by the 5. reaction between 15.0 g of propane (C_3H_8) with 60.0 g of oxygen gas?
- 6. What mass of iron (III) oxide is produced when 20.9 g of iron (II) sulphide reacts with 10.0 L of oxygen gas at 105.5 kPa and a temperature of 42 °C? What volume of sulphur dioxide is produced at S.T.P.?
- 7. Nickel metal can be highly purified using the Mond Process:

$$Ni(s) + 4CO(q) ==> Ni(CO)_4(q)$$

In the first step of this process nickel metal is reacted with carbon monoxide under high pressure and heat to produce a gas product known as nickel carbonyl $(Ni(CO)_4)$. If 40.0 g of nickel metal is reacted with 5.00 L of carbon monoxide at 60.75 atm. pressure and a temperature of 875 K, calculate the resulting total pressure of all gases at 25 $^{\circ}\mathrm{C}$ and total volume 5.00 L. Hints: nickel is the limiting reagent, Dalton's Law of Partial Pressures could be used to solve this problem

1. a) CaC_2 , b) 6.5 g C_2H_2 , 18.5 g $Ca(OH)_2$, c) 33 g H_2O Answers:

2. 27.8 g W 3. 76.6 g H₂SO₄ 4. 39.2 L H₂O, 19.6 L CO₂ 5. 44.9 g CO_2 6. $18.4 \text{ g Fe}_2\text{O}_3$, 5.16 L SO₂ 7. 10.7 atm.