STOICHIOMETRIC PROBLEMS

SHEET #3: VOLUME ==> AMOUNT ==> AMOUNT ==> VOLUME

1. Quicklime, CaO is prepared by heating limestone, ${\rm CaCO}_3.$ The equation for the reaction is :

 $CaCO_3 => CaO + CO_2$

- a) Calculate the mass of quicklime that can be obtained by heating 1 kg of limestone.b) Calculate the volume of carbon dioxide gas that forms at S.T.P. when 1 kg of limestone is reacted?
- 2. When grape sugar $(C_6H_{12}O_6)$ ferments the products are ethyl alcohol (C_2H_5OH) and carbon dioxide. If 1.00 lbs. (454 g) of grape sugar ferments, calculate: a) the mass of ethyl alcohol produced.
 - b) the volume of carbon dioxide produced at 27 °C and 1 atm. pressure
- 3. The oxidation of $\rm NH_3$ is an important reaction in the preparation of nitric acid. The equation is:

 $4NH_3 + 5O_2 = > 6H_2O + 4NO$

- a) How many liters of oxygen gas at S.T.P. are needed to react with 2500 g of NH_3 ? b) What mass of NO is formed when 2500 g of NH_3 reacts?
- 4. When $MoO_3 = \Rightarrow$ and Zn are heated together, they react as follows:

3Zn + 2MoO₃ ==> Mo₂O₃ + 3ZnO

What mass of Mo_2O_3 and what mass of ZnO is formed when 20.0 g of MoO_3 reacts?

- 5. Carbon dioxide is produced in the reaction between calcium carbonate and hydrochloric acid. How many grams of calcium carbonate would be needed to react completely with 15.0 g of hydrochloric acid? How many grams of carbon dioxide would be produced in this experiment?
- 6. When black gunpowder explodes, potassium nitrate, carbon and sulphur react with each other to form nitrogen, carbon dioxide and potassium sulphide. If the original mixture contains 50.0 g of potassium nitrate, what is the total volume of gases produced in this reaction? Assume S.T.P. conditions.
- 7. When ammonia (NH_3) is passed over hot calcium, calcium hydride (CaH_2) and nitrogen gas are produced. If 30 L of nitrogen are recovered at S.T.P., what mass of calcium was originally used?
- 8. The combustion of propane (C_3H_8) is a very common method of home heating. Write a reaction for the combustion of propane. Using the stoichiometry of this equation, determine the ratio of the volume of propane to the volume of air required for optimum performance. Hint: air contains 21.0 % oxygen by volume.

Answers:	1. a) 560 g CaO, b) 224 L CO $_{2}$	5. 20.6 g CaCO ₃ , 9.05 g CO ₂
	2. a) 232 g C_2H_5OH , b) 124 L CO_2	6. 22.2 L gas
	3. a) 4111 L O ₂ , b) 4403 g NO	7. 161 g Ca
	4. 16.7 g Mo ₂ O ₃ , 17.0 g ZnO	8. propane : air = 1 : 23.8