Types of Chemical Reactions

- 1. Synthesis
- 2. Decomposition
- 3. Single Replacement (Displacement)
- 4. Double Replacement (Displacement)
- 5. Combustion of Hydrocarbon

<u>Synthesis:</u>

- two or more elements or compounds combine to form one final product
- eg C + $O_2 \implies CO_2$
- eg $2H_2$ + $O_2 \rightleftharpoons 2H_2O$
- eg N_2 + $4H_2$ + $Cl_2 \Rightarrow 2NH_4Cl$
- eg CaO + $CO_2 \rightleftharpoons CaCO_3$
- eg BaO + $H_2O \implies$ Ba(OH)₂

general from of A + B ⇒ AB

Decomposition:

- reverse of synthesis
- one compound makes two or more products
- products could be elements, compounds or both
- eg 2HgO ⇒ 2Hg + O₂
- eg $\operatorname{Fe}_2(\operatorname{CO}_3)_3 \Longrightarrow \operatorname{Fe}_2\operatorname{O}_3 + 3\operatorname{CO}_2$
- eg Ba(OH)₂ \Rightarrow BaO + H₂O

general form of AB \Rightarrow A + B

- Hint: for synthesis and decomposition, look for small stable familiar substances (H₂O, CO₂, NH₃, HCl)
- One more point: oxidation states may change when you have a synthesis or decomposition

<u>Single Replacements :</u>

- one individual element replaces an element in a compound
- the replaced element is now an individual element
- eg Fe + 3NaOH 🖘 Fe(OH)₃ + 3Na
- can have a cationic replacement or an anionic replacement (metals replace cations, non-metals replace anions)
- eg $2F_2$ + $2MgO \Rightarrow 2MgF_2$ + O_2
- big time complications regarding oxidation states (which will always change)
- as a general rule of thumb, use the most common oxidation state available (i.e. the bold one)
- spontaneity is also a question for single replacements (does the reaction happen or not)

general form A + BC \Rightarrow AC + B for cation replacement D + BC \Rightarrow BD + C for anion replacement

Double Replacements

- swapping of cation anion pairs
- oxidation states never change
- eg NaCl + AgNO₃ = NaNO₃ + AgCl
- $3Na_2SO_4 + 2Ga(IO_4)_3 \Rightarrow 6NaIO_4 + Ga_2(SO_4)_3$

general form AB + CD ⇒ AD + CB

Combustion of a Hydrocarbon

- hydrocarbons are composed of carbon and hydrogen and occasionally other atoms such as O or N
- the reactants are the hydrocarbon itself and oxygen (i.e. O_2)
- the products are the most stable oxides available for carbon (CO_2) and hydrogen (H_2O)
- the product will always be CO_2 and H_2O
- eg C_4H_8 + $6O_2 \Rightarrow 4CO_2$ + $4H_2O$
- eg $2C_6H_{14}$ + $19O_2 \implies 12CO_2$ + $14H_2O$