Redox Reactions

Redox is short for Reduction/Oxidation

REDUCTION: the partial or complete gain of electrons (by an atom molecule or ion)

OXIDATION: the partial or complete lose of electrons (by an atom molecule or ion)

You cannot have a gainer without a loser hence reductions and oxidations are always paired to give a $\underline{\text{REDOX REACTION}}$

L	E	0	the !	lion	say	G	E	R
0	1	Х				a	1	е
i	е	i				i	е	d
n	С	d				n	С	u
	t	i					t	С
	r	Z					r	е
	0	е					0	d
	n	d					n	
	S						S	

Lose

 $\mathbf{\underline{E}}$ lectrons

Oxidized

the lion says

Gain

Electrons

Reduced