SHEET 6 ANSWERS

1. 16.0 g of Ca_2C reacts with 42.0 g of H_2O according to the following reaction:

$$
CaC_2(s) + 2 H_2O(l) \longrightarrow C_2H_2(g) + Ca(OH)_2(s)
$$

a) Determine which reactant in the limiting reagent.

b) What mass of $C_2H_2(g)$ and $Ca(OH)_2(s)$ is produced.

c) Calculate the excess mass of the excess reagent

a) This question is usually not asked directly. If there is information given about two or more reactants, this step MUST BE TAKEN.

Consider CaC_2 :

$$
16.0
$$
g Ca C_2 x $\frac{1 \text{ mol CaC}_2}{64.10 \text{ g CaC}_2} = 0.250 \text{ mol CaC}_2$ avaliable

$$
0.250 \text{ mol CaC}_2 \times \frac{2 \text{ mol H}_2\text{O}}{1 \text{ mol CaC}_2} = 0.499 \text{ mol H}_2\text{O required}
$$

Consider $\rm H_2O$:

42.0 g H₂O x
$$
\frac{1 \text{ mol H}_2O}{18.02 \text{ g H}_2O} = 2.33 \text{ mol H}_2O
$$
 available

$$
2.23 \text{ mol H}_2\text{O} \times \frac{1 \text{ mol CaC}_2}{2 \text{ mol H}_2\text{O}} = 1.17 \text{ mol CaC}_2 \text{ required}
$$

therefore the limiting reagent is $CaC₂$

b) These are examples of typical final questions.

0.250 mol CaC₂ x
$$
\frac{1 \text{ mol C}_2 H_2}{1 \text{ mol CaC}_2}
$$
 x $\frac{26.04 \text{ g C}_2 H_2}{1 \text{ mol C}_2 H_2}$ = 6.50 g C₂H₂ produced
0.250 mol CaC₂ x $\frac{1 \text{ mol Ca(OH)}_2}{1 \text{ mol CaC}_2}$ x $\frac{74.10 \text{ g Ca(OH)}_2}{1 \text{ mol Ca(OH)}_2}$ = 18.5 g Ca(OH)₂ produced

c) This is not a typical question but it helps to point out that there will be left overs for the excess reagent.

$$
0.250 \text{ mol CaC}_2 \times \frac{2 \text{ mol H}_2O}{1 \text{ mol CaC}_2} \times \frac{18.02 \text{ g H}_2O}{1 \text{ mol H}_2O} = 9.00 \text{ g H}_2O \text{ consumed}
$$

mass H₂O excess = (mass H₂O available) - (mass H₂O consumed)
= (42.0 g H₂O) - (9.00 g H₂O)
= 33.0 g H₂O remains after reaction

2. Consider the following reaction at S.T.P. If 35 g of tungsten trioxide reacts with 15 L of H² at S.T.P., what mass of tungsten is produced?

$$
\begin{array}{ccc}\textrm{WO}_3(\mathrm{s}) & + & 3\,\mathrm{H}_2(\mathrm{g}) & \longrightarrow & \textrm{W}(\mathrm{s}) \ + & 3\,\mathrm{H}_2\mathrm{O}(\mathrm{aq})\\ \textrm{35.0 g} & & \textrm{15.0 L} & & ?\ \mathrm{g} & & \end{array}
$$

Consider \rm{WO}_3 :

35.0 g WO₃ x
$$
\frac{1 \text{ mol } WO_3}{231.84 \text{ g } WO_3}
$$
 = 0.151 mol WO₃ available
0.151 mol WO₃ x $\frac{3 \text{ mol } H_2}{1 \text{ mol } WO_3}$ = 0.453 mol H₂ required

1 mol \rm{WO}_3

Consider H_2 :

$$
15.0 \text{ L H}_2 \times \frac{1 \text{ mol H}_2}{22.414 \text{ L H}_2} = 0.669 \text{ mol H}_2 \text{ available}
$$

$$
0.669 \text{ mol H}_2 \times \frac{1 \text{ mol WO}_3}{3 \text{ mol H}_2} = 0.223 \text{ mol WO}_3 \text{ required}
$$

therefore the limiting reagent is \rm{WO}_3

$$
0.151\ {\rm mol\ WO_3\ x}\ {1\ {\rm mol\ W\over 1\ {\rm mol\ WO_3}}\ x}\ {183.84\ {\rm g\ W}\over 1\ {\rm mol\ W}}=\ 27.8\ {\rm g\ W}
$$

3. What mass of H_2SO_4 can be produced from 50.0 g of SO_2 , 15.0 g O_2 and an unlimited amount of H_2O ? The equation is:

$$
\begin{smallmatrix}2\operatorname{SO}_2(g) & +\operatorname{O}_2(g) & +\hspace{0.1cm} 2\operatorname{H}_2\operatorname{O}(l) & \longrightarrow & 2\operatorname{H}_2\operatorname{SO}_4(aq) \\ 50.0\ \mathrm{g} & \hspace{1.5cm} 15.0\ \mathrm{g} & \hspace{1.5cm} ?\end{smallmatrix}
$$

Consider SO_2 :

$$
50.0 \text{ g } \text{SO}_2 \times \frac{1 \text{ mol } \text{SO}_2}{64.07 \text{ g } \text{SO}_2} = 0.780 \text{ mol } \text{SO}_2 \text{ available}
$$

$$
0.780 \text{ mol SO}_2 \times \frac{1 \text{ mol O}_2}{2 \text{ mol SO}_2} = 0.390 \text{ mol O}_2 \text{ required}
$$

Consider O_2 :

$$
15.0 \text{ g } O_2 \times \frac{1 \text{ mol } O_2}{32.00 \text{ g } O_2} = 0.469 \text{ mol } O_2 \text{ available}
$$

$$
0.469 \text{ mol } O_2 \times \frac{2 \text{ mol } SO_2}{1 \text{ mol } O_2} = 0.938 \text{ mol } SO_2 \text{ required}
$$

therefore the limiting reagent is SO_2

$$
0.780 \text{ mol SO}_2 \text{ x } \frac{2 \text{ mol H}_2 \text{SO}_4}{2 \text{ mol SO}_2} \text{ x } \frac{98.09 \text{ g H}_2 \text{SO}_4}{1 \text{ mol H}_2 \text{SO}_4} = 76.5 \text{ g H}_2 \text{SO}_4
$$

4. 40.0 L of O_2 react with 19.6 L of methane (CH₄) at S.T.P. according to the reaction shown below. What volume of water and carbon dioxide are produced at S.T.P.

$$
\begin{array}{cccc}\mathrm{CH_4(g)}&+&\mathrm{2\,O_2(g)}&\longrightarrow&\mathrm{CO_2(g)}&+&\mathrm{2\,H_2O(g)}\\19.6\;\mathrm{L}&&40.0\;\mathrm{L}&&? \;\mathrm{L}\otimes \mathrm{S.T.P.}&&? \;\mathrm{L}\otimes \mathrm{S.T.P.}\\ \end{array}
$$

Consider CH_4 :

19.6 L CH₄ x
$$
\frac{1 \text{ mol } CH_4}{22.414 \text{ L } CH_4} = 0.874 \text{ mol } CH_4
$$
 available
0.874 mol CH₄ x $\frac{2 \text{ mol } O_2}{1 \text{ mol } CH_4} = 1.75 \text{ mol } O_2$ required

Consider O_2 :

$$
40.0
$$
 L O_2 x $\frac{1 \bmod \mathrm{O}_2}{22.414$ L O_2 = 1.78 mol O_2 available

1.78 mol
$$
O_2 \times \frac{1 \text{ mol } CH_4}{2 \text{ mol } O_2} = 0.892 \text{ mol } CH_4
$$
 required

therefore the limiting reagent is $\rm CH_{4}$

0.874 mol CH₄ x
$$
\frac{2 \text{ mol H}_2\text{O}}{1 \text{ mol CH}_4}
$$
 x $\frac{22.414 \text{ L H}_2\text{O}}{1 \text{ mol H}_2\text{O}}$ = 39.2 L H₂O

$$
0.874 \text{ mol CH}_4 \text{ x } \frac{1 \text{ mol CO}_2}{1 \text{ mol CH}_4} \text{ x } \frac{22.414 \text{ L CO}_2}{1 \text{ mol CO}_2} = 19.6 \text{ L CO}_2
$$

5. What is the maximum mass of carbon dioxide that can be produced by the reaction between 15.0 g of propane $\rm (C_3H_8)$ with 60.0 g of oxygen gas?

$$
\begin{array}{ccccc}C_3H_8(g) & + & 5\,O_2(g) & \!\!\longrightarrow & 3\,CO_2(g) & + & 4\,H_2O(g)\\ {\bf 15.0\ g} & & {\bf 60.0\ g} & & {\bf ?\ g}\end{array}
$$

Consider C_3H_8 :

15.0 g C₃H₈ x
$$
\frac{1 \text{ mol } C_3H_8}{44.11 \text{ g } C_3H_8} = 0.340 \text{ mol } C_3H_8
$$
 available
0.340 mol C₃H₈ x $\frac{5 \text{ mol } O_2}{1 \text{ mol } C_3H_8} = 1.70 \text{ mol } O_2$ required

Consider O_2 :

$$
60.0 \text{ g } O_2 \times \frac{1 \text{ mol } O_2}{32.00 \text{ g } O_2} = 1.88 \text{ mol } O_2 \text{ available}
$$

1.88 mol
$$
O_2 \times \frac{1 \text{ mol } C_3H_8}{5 \text{ mol } O_2} = 0.375 \text{ mol } C_3H_8 \text{ required}
$$

therefore the limiting reagent is $\rm{C_3H_8}$

$$
0.340\ {\rm mol\ C_3H_8\ x\ \frac{3\ {\rm mol\ CO_2}}{1\ {\rm mol\ C_3H_8\ x\ }}\ \frac{44.01\ {\rm g\ CO_2}}{1\ {\rm mol\ CO_2}} =\ 44.9\ {\rm g\ CO_2}
$$

6. What mass of iron(III) oxide is produced when 20.9 g of iron(II) sulphide reacts with 10.0 L of oxygen gas at 105.5 kPa and a temperature of 42 ◦C? What volume of sulphur dioxide is produced at S.T.P.?

$$
\begin{array}{cccc} 4\,\text{FeS(s)} & + & 7\,\text{O}_2(\text{g}) & \longrightarrow & 2\,\text{Fe}_2\text{O}_3(\text{s}) & + & 4\,\text{SO}_2(\text{g}) \\ \text{20.9 g} & & \text{10.0 L} & & \text{? g} & & \text{? L @ S.T.P.} \\ \text{42°C} & & & & & \end{array}
$$

Consider O_2 :

$$
P = 105.5 \text{ kPa}
$$

\n
$$
V = 10.0 \text{ L}
$$

\n
$$
n = ?
$$

\n
$$
R = 8.314 \frac{\text{kPa} \cdot \text{L}}{\text{K} \cdot \text{mol}}
$$

\n
$$
T = 42 \text{°C} \rightarrow 315.15 \text{ K}
$$

$$
n~=~\frac{PV}{RT}
$$

$$
n = \frac{105.5 \text{ kPa} \times 10.0 \text{ L}}{8.314 \frac{\text{kPa} \cdot \text{L}}{\text{K} \cdot \text{mol}} \times 315.15 \text{ K}}
$$

 $n = 0.403 \text{ mol O}_2$ available

 $0.403 \text{ mol O}_2 \text{ x}$ 4 mol FeS 7 mol O_2 = 0.230 mol FeS required

Consider FeS :

20.9 g FeS x
$$
\frac{1 \text{ mol FeS}}{87.92 \text{ g FeS}} = 0.238 \text{ mol FeS}
$$
 available
0.238 mol FeS x $\frac{7 \text{ mol O}_2}{4 \text{ mol FeS}} = 0.416 \text{ mol O}_2$ required

therefore the limiting reagent is O_2

$$
0.403 \text{ mol O}_2 \times \frac{2 \text{ mol Fe}_2\text{O}_3}{7 \text{ mol O}_2} \times \frac{159.70 \text{ g Fe}_2\text{O}_3}{1 \text{ mol Fe}_2\text{O}_3} = 18.4 \text{ g Fe}_2\text{O}_3
$$

$$
0.403 \text{ mol O}_2 \times \frac{4 \text{ mol SO}_2}{7 \text{ mol O}_2} \times \frac{22.414 \text{ L SO}_2}{1 \text{ mol SO}_2} = 5.16 \text{ L SO}_2
$$

7. Nickel metal can be highly purified using the Mond Process:

$$
Ni(s) + 4\,CO(g) \longrightarrow Ni(CO)_4(g)
$$

In the first step of this process nickel metal is reacted with carbon monoxide under high pressure and heat to produce a gas product known as nickel carbonyl $(\text{Ni}(\text{CO})_4)$. If 40.0 g of nickel metal is reacted with 5.00 L of carbon monoxide at 60.75 atm. pressure and a temperature of 875 K, calculate the resulting total pressure of all gases at 25 $\rm{°C}$ and total volume 5.00 L. Hints: nickel is the limiting reagent, Dalton's Law of Partial Pressures could be used to solve this problem

Calculate the amount of $CO(g)$ available:

 $P = 60.75 \text{ atm kPa x } \frac{101.325 \text{ kPa}}{1}$ 1 atm $= 6155 \text{ kPa}$ $V = 5.00 L$ $n = ?$ $R = 8.314$ kPa · L $K \cdot \text{mol}$ $T = 875 K$ $n =$ PV RT $n =$ 6155 kPa \times 5.00 L 8.314 kPa · L $K \cdot \text{mol}$ \times 875 K $n = 4.231$ mol CO available

Calculate amount of $CO(g)$ consumed in the reaction:

 $40.0 \text{ g Ni x } \frac{1 \text{ mol Ni}}{50.60 \text{ N}}$ 58.69 g Ni x 4 mol CO $\frac{1 \text{ mol } \times 5}{1 \text{ mol } \text{Ni}}$ = 2.726 mol CO consumed

Calculate the amount of CO remaining (unreacted):

amount CO remaining = (amount CO available) – (amount CO consumed)
=
$$
(4.231 \text{ mol CO}) - (2.726 \text{ mol CO})
$$

= 1.505 mol CO remains after reaction

Calculate the amount of $\mathrm{Ni}(\mathrm{CO})_4$ formed:

$$
40.0 \text{ g Ni x } \frac{1 \text{ mol Ni}}{58.69 \text{ g Ni}} \times \frac{1 \text{ mol Ni(CO)}_4}{1 \text{ mol Ni}} = 0.6815 \text{ mol Ni(CO)}_4 \text{ formed}
$$

Calculate the total amount of gases after reaction:

total amount of gases = (amount CO remaining) – (amount $Ni(CO)₄$ formed) $= (1.505 \text{ mol CO}) + (0.6815 \text{ mol Ni(CO)}_{4})$ = 2.186 mol of gas remains after reaction

Calculate the pressure of remaining gas:

$$
P = ?
$$

\n
$$
V = 5.00 L
$$

\n
$$
n = 2.186 \text{ mol gas}
$$

\n
$$
R = 8.314 \frac{kPa \cdot L}{K \cdot mol}
$$

\n
$$
T = 25 \text{ }^{\circ}\text{C} \rightarrow 298.15 K
$$

\n
$$
P = \frac{2.186 \text{ mol} \times 8.314 \frac{kPa \cdot L}{K \cdot mol} \times 298.15 K}{5.00 L}
$$

\n
$$
P = 1084 kPa
$$

$$
1084 \text{ kPa} \times \frac{1 \text{ atm}}{101.325 \text{ kPa}} = 10.696 \text{ atm}
$$