Solubility of Ionic Compounds - Solubility Rules

- when an ionic compound dissolves in water, its ions become "hydrated" through interactions between ionic charges and the $\delta^{\scriptscriptstyle +}$ and $\delta^{\scriptscriptstyle -}$ charges on water molecules

- ionic compounds have variable solubility, some are very soluble, other are virtually insoluble (low soluble)
- solubility is based on replacement forces:

hydration energy > lattice energy → soluble hydration energy < lattice energy → insoluble</pre> - **SOLUBILITY RULES** list what is soluble and what is not

(DO SOLUBILITY RULES EXERCISE HERE)

 we can write **dissociation equation** for soluble substances (they show the aqueous ions that are produced through the dissolving process)

> NaNO₃(s) \rightarrow Na¹⁺(aq) + NO₃¹⁻(aq) H₂O

- dissociation equations produce ions and represent a physical change (change of state) not a chemical reaction

$$K_2CO_3(s) \rightarrow 2K^{1+}(aq) + CO_3^{2-}(aq)$$

 H_2O

 $PbCl_2(s) \rightarrow (does not dissolve - insoluble)$ H₂O

$$(NH_4)_3PO_4(s) \rightarrow 3NH_4^{1+}(aq) + PO_4^{3-}(aq)$$

 H_2O

- eg Ba(NO₃)₂(s) \rightarrow Ba²⁺(aq) + 2NO₃¹⁻(aq)

 $H_2SO_4(1) \rightarrow 2H^{1+}(aq) + SO_4^{2-}(aq)$

 $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$

There are left over unreacted ions $(H^{1+}(aq) \text{ and } NO_3^{1-}(aq))$. These ion are called spectator ions (they watch the action, they do not participate in the precipitate)

The precipitate of $BaSO_4$ forms because $BaSO_4$ is low solubility and there Ba^{2+} and $SO_4^{\,2-}$ ion cannot coexist in solution.