Octet Rule for Main Group Elements

	H Li Na K Rb Cs Fr	Be Mg Ca Sr Ba Ra	B Al Ga In Tl	C Si Ge Sn Pb		N P As Sb Bi	O Se Te Po	F Cl Br I At	He Ne Ar Kr Xe Rn
simplified e ¹⁻ config in valence shell	$\operatorname{\mathtt{S}}^1$	s^2	s^2p^1	s ² p ¹		s^2p^3	s ² p ⁴	s ² p ⁵	s²p6
# of e ¹⁻ in valence shell	1	2	3	4		5	6	7	8
# of e ¹⁻ lost during reaction	1	2	3	4	/	/	/		
# of e ¹⁻ gained during reaction		/	/	/	4	3	2	1	0
# of e ¹⁻ remaining in original valence shell	0	0	0	0	8	8	8	8	8
# of e ¹⁻ in outermost occuppied shell (may be a new valence	8	8	8	8		8	8	8	8
simplified e ¹⁻ config in outermost shell after reaction	s²p6	s²p6	s²p6	s²p ⁶		s²p6	s²p6	s²p6	s²p6

An octet of electrons has a stable quantum mechanical wave pattern that has the electron configuration of s^2p^6 (eight is great ©)