Octet Rule for Main Group Elements | | H
Li
Na
K
Rb
Cs
Fr | Be
Mg
Ca
Sr
Ba
Ra | B
Al
Ga
In
Tl | C
Si
Ge
Sn
Pb | | N
P
As
Sb
Bi | O
Se
Te
Po | F
Cl
Br
I
At | He
Ne
Ar
Kr
Xe
Rn | |---|--------------------------------------|----------------------------------|---------------------------|-------------------------------|---|--------------------------|-------------------------------|-------------------------------|----------------------------------| | simplified e ¹⁻
config in
valence shell | $\operatorname{\mathtt{S}}^1$ | s^2 | s^2p^1 | s ² p ¹ | | s^2p^3 | s ² p ⁴ | s ² p ⁵ | s²p6 | | # of e ¹⁻ in valence shell | 1 | 2 | 3 | 4 | | 5 | 6 | 7 | 8 | | # of e ¹⁻ lost
during
reaction | 1 | 2 | 3 | 4 | / | / | / | | | | # of e ¹⁻ gained during reaction | | / | / | / | 4 | 3 | 2 | 1 | 0 | | # of e ¹⁻ remaining in original valence shell | 0 | 0 | 0 | 0 | 8 | 8 | 8 | 8 | 8 | | # of e ¹⁻ in outermost occuppied shell (may be a new valence | 8 | 8 | 8 | 8 | | 8 | 8 | 8 | 8 | | simplified e ¹⁻ config in outermost shell after reaction | s²p6 | s²p6 | s²p6 | s²p ⁶ | | s²p6 | s²p6 | s²p6 | s²p6 | An octet of electrons has a stable quantum mechanical wave pattern that has the electron configuration of s^2p^6 (eight is great ©)