/76 = %

Name:_____

<u>SCH 3U - Physical Properties Test</u>

- 1. For the discrete covalent molecules: NF_3 and CCl_3 draw:
- a) a good lewis dot diagram
- b) a good stick structure diagram
- c) add appropriate bond polarizations to the stick structure diagram
- d) determine net molecular polarization

NF ₃	CCl ₄	
lewis dot diagram	lewis dot diagram	
/3 stick structure with bond and molecular polarizations	stick structure with bond and molecular polarizations	/3
/3		/3

2. For the above two discrete covalent molecules, which compound would have a higher melting or boiling point and why?

/2

/12

3. For each of the following compounds, place them in the correct location in the table provided. Some compounds may require a considerable amount of rough work to fully determine their best location in the table.

Sn	H ₂ O	SiF4	KI	C _n (diamond)
MgCl ₂	HCl	Ag	CO_2	C ₅ H ₁₂
NCl ₃	N_2	I ₂	$\rm NH_3$	SiO_2 (quartz)

Ionic		Metallic		
	Network	Discrete		
		Non-polar	Polar	

- 4. For the four substances listed, state the conductivity behaviour for each. If conductivity occurs include the full and correct identity of charge carriers, if non-conductive, provide details:
 - (s) → solid state
 - (l) → liquid
 - (g) **→** gas
 - (aq) \rightarrow aqueous solution solution in water

/15

/8

5. Will NaCl(s) dissolve well in hexane? Hexane has the chemical formula $C_6H_{14}(1)$. Why or why not?

6. Will NaCl(s) dissolve well in water? Why or why not?

7. What is the underlying basis for crystallinity? Answer this question with consideration for the structure at the atomic level. What is a good example of a crystalline substance that contains only covalent bonds?

8. What is an empirical formula? What classification of compounds (see the headings in question #3) have only empirical formula?

9. What is a molecular formula? Give a clear example. What class of compounds can have a molecular formula.

/3

/3

/3

/3

10.	Match	each	definition	with	the	word	that	it	best	defines.	

sharing of electrons satisfies	a)	discrete covalent
 the octet rule		molecules
 forces that exist within a molecule	b)	difference in electronegativity
 occurs when bond polarizations are present and molecule geometry in not symmetrical	с)	intermolecular
 can be used to determine bond type or bond polarity	d)	macromolecule
 electron transfer forms ions that follow the octet rule	e)	lattice energy
forces of attraction the exist between discrete covalent molecules	f)	intramolecular
 molecules with a small and precise number of atoms	g)	covalent bond
 a type of energy that is associated with an ionic crystal	h)	hyration energy
 property of a metal that means it is bendable	i)	ionic bond
 a type of energy that is associated with the interaction between ions and water molecules in an aqueous solution	j)	metallic bonding
 large and unspecified number of atoms or ions form a high melting point substance	k)	cleavage
 a property where by a substance can fracture along planes within a lattice arrangement to form flat surfaces	1)	net molecular polarization
 makes possible free moving electrons	m)	malleable

11. With the aid of good well labeled diagrams, explain why diamond has a "melting point" near 4000 °C while water has a melting point of a mere 0 °C and yet the bonds between H and O in water are 33% stronger than the bonds between C and C in diamond. Use the terminology that has been introduced in this course where appropriate.