2

	=	
`マフ		
51		

Name:		

SCH 3U Bonding Quiz

- 1. For each of the following:
 - determine the type of bonding (ionic vs covalent) and clearly state to the left of the atoms
 - do the rough work
 - show the results (draw good answer diagrams)
 - add the details

Ca Br

P EQ

C 0

Н

วก

Z

Name:____

SCH 3U Bonding Quiz

- For each of the following: 1.
 - determine the type of bonding (ionic vs covalent) and clearly state to the left of the atoms
 - do the rough work
 - show the results (draw good answer diagrams)
 - add the details

wic

AEN= 2.96 -1.00

= 1.96

covalut

AEN= 3,16-2.19

= 0,97

coralent

1EN= 3.44-2.55

= 0.89

covalent

1EN = 3.44 - 2.20

= 1,24

SCH 3U Bonding Quiz

- For each of the following: 1.
 - determine the type of bonding (ionic vs covalent) and clearly state to the left of the atoms
 - do the rough work
 - show the results (draw good answer diagrams)
 - add the details

DEN= 2.96 -1.00

= 1.96

AEN= 3,16-2.19 = 0,97

1EN= 3.44-2.55 = 0.89

AEN = 3.44 - 2.20

= 1,24

SCH 3U Bonding Quiz

- 1. For each of the following:
 - determine the type of bonding (ionic vs covalent) and clearly state to the left of the atoms
 - do the rough work
 - show the results (draw good answer diagrams)
 - add the details

ionic

 $\Rightarrow \left[\begin{array}{c} \stackrel{\times}{\underset{\times}{\times}} \stackrel{\times}{\underset{\times}{\times}} \right]^{-} \left[C_{a} \right]^{2+} \left[\begin{array}{c} \stackrel{\times}{\underset{\times}{\times}} \stackrel{\times}{\underset{\times}{\times}} \end{array} \right]^{-}$

AEN= 2.96 -1.00 = 1.96

covalut needs 3

× EL×

needo l

AEN= 3,16-2.19

= 0,97

; ca;

covalent needs 4 needs 2 ×2

AEN= 3.44-2.55 = 0.89

need 1 x 2 needs 2

AEN= 3.44 - 2.20

= 1,24

6

6

SCH 3U Bonding Quiz

- For each of the following: 1.
 - determine the type of bonding (ionic vs covalent) and clearly state to the left of the atoms
 - do the rough work
 - show the results (draw good answer diagrams)
 - add the details

 $\Rightarrow \left[\begin{array}{c} x \\ x \\ x \\ x \end{array} \right]^{2} \left[Ca \right]^{2} \left[\begin{array}{c} x \\ x \\ x \end{array} \right]^{-1}$

AEN= 2.96 -1.00

= 1.96

CaBrz

AEN = 3,16-2.19 = 0,97

three single

PC13

1 EN = 3.44-2.55 = 0.89

CO2

AEN = 3.44 - 2.20

= 1,24

two single

H20

- 2. For each of the following pairs of atoms in covalent bondslook up and write the electronegativity below each atom
 - determine the direction of bond polarization and indicate this answer by adding arrowhead and etc. to each bond (i.e. should look like this X → Z or X ← Z depending on the direction of polarization

C - + F		O ← ← H		P → Cl	
2.55	3.98	3.44	7.20	2.19	3.16
c ++ 0		F^{1-} As ³⁺		N N	
2.55	3.44	3.99	2.18	3,04	3,04
		IONI	C		

 Δ EN = 1.81

3. For the following molecules, add bond polarizations, determine net molecular polarizations and add δ^+ and δ^- as appropriate. Complete each diagram as appropriate.

4. For the formula CH_2F_2 , write two different possible stick structures and discus the implication for net molecular polarization. Would this be an important consideration in the strength of intermolcular forces?

6

Ï