Classification of Matter According to Bonding ionic bonding: requires a metal and a non-metal metallic bonding: requires metals only covalent bonding: requires non-metals only - could be a network solid (diamond C_n or quartz $(SiO_2)_n$) - could be a discrete covalent molecule, which could be polar or non-polar ## other useful points: - find ionic and metallic compounds first - put C_n and SiO_2 in the network solid column (remember) - deal with remainder (hard ones discrete covalent) - if C and H only \rightarrow non-polar (Δ EN is too small to be polar) - if C H and O → polar (strong O polarizations) - draw diagram for the rest or remember | IONIC | COVALENT | | | METALLIC | |-------------------|---|-------|-----------|----------------------| | (macromolec ules) | NETWORK DISCRETE COVALENT SOLID MOLECULES | | SOLID | (macromolec
ules) | | | (macromolec ules) | POLAR | NON-POLAR | K_2S | Au | Na ₂ O | CuZn (brass) | LiCl | |-----------------|------------------|-------------------|--------------|--------| | C_n (diamond) | SiO_2 (quartz) | CH_4 | NH_3 | H_2O | | CO_2 | C_4H_{10} | C_2H_5OH | Fe | HCl | | NaCl | C_3H_6O | $C_6H_{12}O_6$ | Al_2O_3 | PH_3 | ⁻ see next page for answers | IONIC | COVALENT | | | METALLIC | | |--|------------------------------------|---|--|-------------------|--| | (macromolec ules) | NETWORK
SOLID | DISCRETE COVALENT MOLECULES | | (macromolec ules) | | | | (macromolec ules) | POLAR | NON-POLAR | | | | K_2S Na_2O $LiCl$ $NaCl$ Al_2O_3 | C _n
SiO ₂ | $C_{2}H_{5}OH$ $C_{6}H_{12}O_{6}$ $C_{3}H_{6}O$ NH_{3} $H_{2}O$ $HC1$ | $\begin{array}{c} {\rm CH_4} \\ {\rm C_4H_{10}} \\ {\rm CO_2} \\ {\rm PH_3} \end{array}$ | Au
CuZn
Fe | |