Empirical and Molecular Formula Calculations

- **Empirical Formula:** tells you the simplest ratio of the atoms that form a compound (must be in lowest terms) eg NaCl, MgCl₂, Fe, CH₂O, H₂O
- **Molecular Formula:** tells you the exact number of each type of atom in a compound (is applicable to discrete covalent molecules only) eg $C_6H_{12}O_6$, $H_2C_2O_4$, H_2O , CH_2O

Note that a molecular formula for small molecules can be the same as the empirical formula as long as the molecular formula tells you the exact number of atoms in a molecule.

Empirical Formula Calculation:

eg 1 determine the empirical formula for a compound that is 39.99 % C, 6.73 % H and 53.28 % O by mass.

In a 100 g sample: (makes the calculation easier)

C: 39.99 g x
$$1 \mod = 3.330 \mod \div 3.330 \mod \ast = 1.000 \approx 1 \ast \ast$$

12.01 g

H: 6.73 g x 1 mol = 6.663 mol
$$\div$$
 3.330 mol = 2.001 \simeq 2
1.01 g

O: 53.28 g x 1 mol = 3.330 mol
$$\div$$
 3.330 mol = 1.000 \simeq 1
16.00 g

Therefore the empirical formula is CH_2O

* always divide by the smallest amount (in mol)

** round as appropriate

eg 2 determine the empirical formula for a compound that is 19.93 % C, 1.68 % H and 78.43 % Cl by mass.

In a 100 g sample:

- C: 19.93 g x <u>1 mol</u> = 1.659 mol \div 1.659 mol = 1.000 x 3* = 3.000 \simeq 3 12.01 g
- H: 1.68 g x <u>1 mol</u> = 1.663 mol \div 1.659 mol = 1.002 x 3 = 3.006 \simeq 3 1.01 g
- Cl: 78.43 g x <u>1 mol</u> = 2.212 mol \div 1.659 mol = 1.333 x 3 = 4.000 \simeq 4 35.45 g

Therefore the empirical formula is $C_3H_3Cl_4$

* an extra multiplication step is required to create whole number ratios (rounding to whole numbers in the last step must always be close)

Molecular Formula Calculation:

require extra information that gives the molecular or molar mass of the compound in question.

eg 3 determine the molecular formula for a compound that is 54.52 % C, 9.17 % H and 36.31 % O by mass and has a molecular mass of 132.18 g/mol

In a 100 g sample: C: 54.52 g x <u>1 mol</u> = 4.540 mol \div 2.269 mol = 2.001 \simeq 2 12.01 q H: 9.17 g x <u>1 mol</u> = 9.079 mol \div 2.269 mol = 4.001 \simeq 4 1.01 g O: 36.31 g x <u>1 mol</u> = 2.269 mol \div 2.269 mol = 1.000 \simeq 1 16.00 q Therefore the empirical formula is C_2H_4O The empirical mass is: Number of Empirical Units are: C: $2 \times 12.01 \text{ g} = 24.02 \text{ g}$ molecular mass = 132.18 q = 3H: $4 \times 1.01 q = 4.04 q$ empirical mass 44.06 g $0: 1 \times 16.00 \text{ g} = 16.00 \text{ g}$ 44.06 q

Therefore the molecular formula is: 3 x (C_2H_4O) = $C_6H_{12}O_3$