require extra information that gives the molecular or molar mass of the compound in question.

eg 3 determine the molecular formula for a compound that is 54.52 % C, 9.17 % H and 36.31 % O by mass and has a molecular mass of 132.18 g/mol

In a 100 g sample:

C:
$$54.52 \text{ g x} \frac{1 \text{ mol}}{12.01 \text{ g}} = 4.540 \text{ mol} \div 2.269 \text{ mol} = 2.001 \approx 2$$

H:
$$9.17 \text{ g x } \underline{1 \text{ mol}} = 9.079 \text{ mol} \div 2.269 \text{ mol} = 4.001 \approx 4$$

 1.01 g

0: 36.31 g x
$$1 \text{ mol}$$
 = 2.269 mol ÷ 2.269 mol = 1.000 \approx 1 16.00 g

Therefore the empirical formula is C_2H_4O

Starts out the same.

No extra

multiplication

step required in

this example

require extra information that gives the molecular or molar mass of the compound in question.

eg 3 determine the molecular formula for a compound that is 54.52 % C, 9.17 % H and 36.31 % O by mass and has a molecular mass of 132.18 g/mol

In a 100 g sample:

C:
$$54.52 \text{ g x } \underline{1 \text{ mol}} = 4.540 \text{ mol} \div 2.269 \text{ mol} = 2.001 \approx 2$$

12.01 g

H:
$$9.17 \text{ g x } \underline{1 \text{ mol}} = 9.079 \text{ mol} \div 2.269 \text{ mol} = 4.001 \approx 4$$

 1.01 g

O: 36.31 g x
$$1 \text{ mol}$$
 = 2.269 mol ÷ 2.269 mol = 1.000 \approx 1 16.00 g

Therefore the empirical formula is C_2H_4O

The empirical mass is:

C:
$$2 \times 12.01 \text{ g} = 24.02 \text{ g}$$

$$H: 4 \times 1.01 q = 4.04 q$$

$$0: 1 \times 16.00 \text{ g} = 16.00 \text{ g}$$

$$44.06 \text{ g}$$

This calculates the mass

of one empirical unit

require extra information that gives the molecular or molar mass of the compound in question.

eg 3 determine the molecular formula for a compound that is 54.52 % C, 9.17 % H and 36.31 % O by mass and has a molecular mass of 132.18 g/mol

In a 100 g sample:

C:
$$54.52 \text{ g x } \underline{1 \text{ mol}} = 4.540 \text{ mol} \div 2.269 \text{ mol} = 2.001 \approx 2$$

12.01 g

H: 9.17 g x
$$1 \text{ mol}$$
 = 9.079 mol ÷ 2.269 mol = 4.001 \approx 4 1.01 g

O: 36.31 g x
$$\frac{1 \text{ mol}}{16.00 \text{ g}}$$
 = 2.269 mol ÷ 2.269 mol = 1.000 \approx 1

Therefore the empirical formula is C_2H_4O

The empirical mass is:

C: 2 x 12.01 g = 24.02 g
H: 4 x 1.01 g = 4.04 g
O: 1 x 16.00 g = 16.00 g
$$44.06$$
 g

Number of Empirical Units are:

This number must be

given in the question

$$\frac{\text{molecular mass}}{\text{empirical mass}} = \frac{132.18 \text{ g}}{44.06 \text{ g}} = 3$$

require extra information that gives the molecular or molar mass of the compound in question.

eg 3 determine the molecular formula for a compound that is 54.52 % C, 9.17 % H and 36.31 % O by mass and has a molecular mass of 132.18 g/mol

In a 100 g sample:

C:
$$54.52 \text{ g x } \underline{1 \text{ mol}} = 4.540 \text{ mol} \div 2.269 \text{ mol} = 2.001 \approx 2$$

12.01 g

H:
$$9.17 \text{ g x } \underline{1 \text{ mol}} = 9.079 \text{ mol} \div 2.269 \text{ mol} = 4.001 \approx 4$$

 1.01 g

O: 36.31 g x
$$1 \text{ mol}$$
 = 2.269 mol ÷ 2.269 mol = 1.000 \approx 1 16.00 g

Therefore the empirical formula is C_2H_4O

The empirical mass is:

C:
$$2 \times 12.01 \text{ g} = 24.02 \text{ g}$$

H: $4 \times 1.01 \text{ g} = 4.04 \text{ g}$

O: $1 \times 16.00 \text{ g} = 16.00 \text{ g}$
 44.06 g

molecular mass = 132.18 g = 3
empirical mass 44.06 g

Therefore the molecular formula is: $3 \times (C_2H_4O) = C_6H_{12}O_3$

Multiplying by the number of empirical units gives the molecular formula of the same percent composition.