Subatomic Particles

Four Fundamental Forces of Nature (physics):

- gravity

- electromagnetic force (includes electrostatic force)
- strong nuclear force (holds the nucleus together)
- weak nuclear force (holds protons and electron together to form neutrons)

Force Equation:

- the force equation governs the way charged particles interact
- it is used for point charges (small and spherical)

$$F = \frac{-kq_1q_2}{d^2}$$

F = force $q_1 = first point charge$ $q_2 = second point charge$ d = distance between point charges-k = is an annoying constant

- useful to ignore k making the equation

$$\mathbf{F} \propto \frac{\mathbf{q}_1 \mathbf{q}_2}{\mathbf{d}^2}$$

- this can be thought of as being like

$$F = \frac{q_1 q_2}{d^2}$$

- conclusions that can be reached from this equation are
 - the greater the charges, the greater the force
 - the greater the distance, the weaker the force
- the second point has the greater effect because of the exponent of 2

charge #1 (q ₁)	charge #2 (q ₂)	distance (d)	force (F)	attraction or repulsion
1+	2-	1	2 (ignore the sign)	attraction
4- (4 x greater)	2-	1	8 (4 x greater)	repulsion
1+	2+	2 (2 x greater)	0.5 (4 x less)	repulsion
3+	5-	4	0.9375	attraction
1+	1+	1/4	16	repulsion

Subatomic Particles:

name	symbol	charge	mass	location
proton	p+	1+	1 u	in the nucleus
neutron	n	0	1 u	in the nucleus
electron	e⁻	1-	0.00055 u	orbits the nucleus

Atomic Symbols:

- short hand method of describing the composition of any atom

- E = the element symbol (eg H, C, Fe)
- Z = atomic number = the number of p^+ in the nucleus (also the number of e^- in a neutral atom)
- A = mass number = the number of nucleons found in the nucleus (a nucleon is either a p^+ or a n)

$$A = p^+ + n$$

- it makes sense to group protons and neutrons together in the mass number since they have the same mass (1 u)
- 1 u is equivalent to 1.6066 x 10^{-24} g

185	# of p ⁺ = 74
\mathbb{W}	# of n = 111
74	# of e ⁻ = 74
51	# of p ⁺ = 22
Ti	# of n = 29
22	# of e ⁻ = 22
193	# of p ⁺ = 78
Pt	# of n = 115
78	# of e ⁻ = 78
234	# of p ⁺ = 90
Th	# of n = 144
90	# of e ⁻ = 90