
Name:_____

<u>Chemistry Unit Test - SNC 2D</u>

1. Complete each Bohr diagram. Include all details:

2. Give a definition for the octet rule:

When elements react to form compounds, each element will either lose or gain electrons to become like the nearest noble gas. When this happens, the element will have the same electron arrangement as the noble gas.

3. Write the ion that forms as a result of the octet rule for each of the following atoms (first one is done for you):

₁₁ Na	Na ¹⁺
33 As	As ³⁻
₂₀ Ca	Ca ²⁺
₁₉ K	K ¹⁺
₁₇ Cl	Cl ¹⁻

₁₆ S	S ²⁻
₁₃ Al	Al ³⁺
₅₃ I	I ¹⁻
₁ H	H^{1+}
₁₅ P	P ³⁻

₆ C	C4+/C4-
₄₉ In	In^{3+}
₁₀ Ne	Ne
₁₄ Si	Si ⁴⁺ /Si ⁴⁻
80	O ²⁻

4. Provide either names or formula for each of the following:

calcium chloride	CaCl ₂
calcium chlorate	Ca(ClO ₃) ₂
sodium sulphide	Na ₂ S
sodium sulphate	Na ₂ SO ₄
nickel(II) nitride	Ni_3N_2
iron(III) carbonate	Fe ₂ (CO ₃) ₃
manganese(VII) iodide	MnI ₇
lead(II) nitrate	Pb(NO ₃) ₂

KCl	potassium chloride			
K ₂ SO ₄	potassium sulphate			
Au ₂ SO ₄	gold(I) sulphate			
AgCl	silver chloride			
HgCl	mercury(I) chloride			
ZnCl ₂	zinc chloride			
Sr(NO ₃) ₂	strontium nitrate			
V_2O_5	vanadium(V) oxide			

- 5. For each of the following descriptions, provide the evidence of a chemical change:
 - a) two solutions are mixed together, there is the formation of a bright red compound that makes the mixed solution cloudy and no longer see through

change of colour formation of a precipitate

b) a spark is provided to ignite the gas of a Bunsen burner to produce a flame

production of heat or light

c) after shaking a can of pop, opening the can results in an abrupt overflow of fizz

evolution of a gas

d) when the indicator bromothymol blue is place in acid, it turns from blue to yellow, slowly adding base will turn the colour back to blue (will pass through a green phase on the way to blue)

change of colour

6. What type of change is the melting an ice cube to form water? Explain the reason for your choice.

physical change - no new substance is formed, change of state

7. What type of change is creating carbon dioxide and water from the combustion of methane. Explain the reason for your choice.

chemical change - new substance is formed

8. For each of the following reactions, provide chemical coefficients to balance each equation and state the type of equation:

synthesis:	А	+	В	→	AB			
decomposition:	AB	→	А	+	В			
single replacement: (hint - find elements)								
double replacement:	AB	+	CD	→	AD	+	СВ	
combustion of a hydrocarbon:	C_xH_y	, +	- O ₂	2	O ₂	: +	H ₂ O	

BALANCE!!!	REACTION TYPE
2KClO ₃ → 2KCl + 3O ₂	decomposition
P ₄ O ₁₀ + 6H ₂ O → 4H ₃ PO ₄	synthesis
$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$	combustion of a hydrocarbon
$Fe_2(SO_4)_3 + 6KOH \rightarrow 3K_2SO_4 + 2Fe(OH)_3$	double replacement
2Al + 3FeO → Al ₂ O ₃ + 3Fe	single replacement
4Al + 3O ₂ → 2Al ₂ O ₃	synthesis
$Al_2(SO_4)_3 + 3Ca(OH)_2 \rightarrow 2Al(OH)_3 + 3CaSO_4$	double replacement
2Al + 6HCl → 2AlCl ₃ + 3H ₂	single replacement

9. Fill out this table to give a comparison between the properties of an acid and a base:

ACIDS	BASES						
sour	bitter						
feels clean	feels slippery						
litmus turns red	litmus turns blue						
reacts with metals	does not react with metals						
H1+ (hydrogen ion)	OH1- (hydroxide ion)						

10. What are the common products of a neutralization reaction? Give an example using both a word equation and a chemical equation for hydrochloric acid (HCl) and sodium chloride (NaOH)

a salt p	lus water	•					
word equation:	hydrochl	orio	c acid	+ s		_	roxide → nloride + water
chemical equation:	HC1	+	NaOH	→	NaCl	+	H_2O

11. Please look at the following information regarding pH indicators:

INDICATOR	pH COLOUR RANGE													
NAME	1	2	3	4	5	6	. 1	7 8	9	10	11	12	13	14
methyl orange		red						orange						
litmus		pink						blue						
bromothymol blue		yellow						blue						
phenolphthalein		clear						pink						
alizarin yellow		yellow										pin:	k	

Come up with a pH range for each substance based on the following information:

a) vinegar - turn litmus to pink - methyl orange to red 1 to 4

- 12. Draw a pH scale from 1 to 14. Label the portion that is acidic, basic and neutral. On this scale place the following items
 - a) sulphuric acid (a very strong acid used in batteries)
 - b) sodium hydroxide (lye, a very strong base used to make soap pioneer days)
 - c) baking soda
 - d) lemon juice
 - e) good face soap

You may wish to draw your scale vertically.

Please look this up on page 230 of your text, or follow the links I have added to the website.

13. For each of the following gases, indicate if the gas is combustible, supports combustion or extinguishes combustions. Also indicate how you could test this gas with either a glowing splint or a flaming splint. One example is done for you:

GAS	COMBUSTION PROPERTIES	SPLINT TEST
Xenon (Xe)	extinguishes combustion	flaming splint goes out
Hydrogen (H ₂)	combustible	flaming splint causes popping sound
Oxygen (O ₂)	supports combustion	glowing splint bursts into flame
Carbon Dioxide (CO_2)	extinguishes combustion	flaming splint goes out
Acetylene (C_2H_2)	combustible	flaming splint causes popping sound