Inorganic Nomenclature

"Nomenclature" means the naming of.

RULE #1 - CATION/ANION

- cation first (postive ion)
- anion second (negative ion)

RULE #2 - POSITIVE AND NEGATIVE MUST BALANCE

- charge balance must be achieved
- the number of <u>cations times the cation charge</u> must be equal but opposite the number of <u>anions times the anion charge</u>
- use a teeter toter

RULE #3 - CATIONS USE THE NAME AS SEEN ON THE PERIODIC TABLE

- monovalent cations DO NOT use a roman numeral
- polyvalent cations DO use a roman numeral in brackets after the cation name to identify the charge on the polyvalent cation*

RULE #4 - ELEMENTAL ANIONS HAVE NAME WITH AN

"IDE" SUFFIX

C ⁴⁻	carbide	
N^{3-}	nitride	
O ²⁻	oxide	
\mathbb{F}^{1-}	fluoride	
P ³⁻	phosphide	
S^{2-}	sulphide (sulfide)	
Cl^{1-}	chloride	
As ³⁻	arsenide	
Se ²⁻	selenide	
Br^{1-}	bromide	
Sb ³⁻	antimonide	
Te ²⁻	telluride	
I ¹⁻	iodide	

- POLYATOMIC ANIONS HAVE SPECIAL NAMES AND A "COMBINED CHARGE" **

*Polyvalent Cations:

-	cations that are capable of more than one
	possible charge
_	a roman numeral is used to state the charge
	on the cation
—	eg Fe ²⁺ is called iron(II)
	Fe ³⁺ is called iron(III)
—	roman numerals are as follows
	I
	II
	III
	IV
	V
	VI
	VII
	VIII
	IX
	X
_	writing a formula is easier

 writing names is more difficult (you must determine the charge on the cation)

**Polyatomic Ions:

- a group of atoms that are bonded together and share a "combined charge"
- the group must be kept together
- if you need more than one of the group,
 brackets are used
- eg SO_4^{2-} = sulphate (the 2- is the combined charge) The "4" tells you the number of oxygens in the group. It does not multiple the 2- charge

 Na_2SO_4 MgSO₄ Al₂(SO₄)₃

Common polyatomic ions are:

CO3 ²⁻	carbonate
NO ₃ ¹⁻	nitrate
PO4 ³⁻	phosphate
SO_4^{2-}	sulphate
ClO ₃ ¹⁻	chlorate
OH ¹⁻	hydroxide
CN^{1-}	cyanide
$\rm NH_4^{1+}$	ammonium